IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3199-d259358.html
   My bibliography  Save this article

Research on Short-Term Load Prediction Based on Seq2seq Model

Author

Listed:
  • Gangjun Gong

    (Beijing Engineering Research Center of Energy Electric Power Information Security, North China Electric Power University, Beijing 102206, China)

  • Xiaonan An

    (Beijing Engineering Research Center of Energy Electric Power Information Security, North China Electric Power University, Beijing 102206, China)

  • Nawaraj Kumar Mahato

    (Beijing Engineering Research Center of Energy Electric Power Information Security, North China Electric Power University, Beijing 102206, China)

  • Shuyan Sun

    (Beijing Engineering Research Center of Energy Electric Power Information Security, North China Electric Power University, Beijing 102206, China)

  • Si Chen

    (School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China)

  • Yafeng Wen

    (Beijing Engineering Research Center of Energy Electric Power Information Security, North China Electric Power University, Beijing 102206, China)

Abstract

Electricity load prediction is the primary basis on which power-related departments to make logical and effective generation plans and scientific scheduling plans for the most effective power utilization. The perpetual evolution of deep learning has recommended advanced and innovative concepts for short-term load prediction. Taking into consideration the time and nonlinear characteristics of power system load data and further considering the impact of historical and future information on the current state, this paper proposes a Seq2seq short-term load prediction model based on a long short-term memory network (LSTM). Firstly, the periodic fluctuation characteristics of users’ load data are analyzed, establishing a correlation of the load data so as to determine the model’s order in the time series. Secondly, the specifications of the Seq2seq model are given preference and a coalescence of the Residual mechanism (Residual) and the two Attention mechanisms (Attention) is developed. Then, comparing the predictive performance of the model under different types of Attention mechanism, this paper finally adopts the Seq2seq short-term load prediction model of Residual LSTM and the Bahdanau Attention mechanism. Eventually, the prediction model obtains better results when merging the actual power system load data of a certain place. In order to validate the developed model, the Seq2seq was compared with recurrent neural network (RNN), LSTM, and gated recurrent unit (GRU) algorithms. Last but not least, the performance indices were calculated. when training and testing the model with power system load data, it was noted that the root mean square error (RMSE) of Seq2seq was decreased by 6.61%, 16.95%, and 7.80% compared with RNN, LSTM, and GRU, respectively. In addition, a supplementary case study was carried out using data for a small power system considering different weather conditions and user behaviors in order to confirm the applicability and stability of the proposed model. The Seq2seq model for short-term load prediction can be reported to demonstrate superiority in all areas, exhibiting better prediction and stable performance.

Suggested Citation

  • Gangjun Gong & Xiaonan An & Nawaraj Kumar Mahato & Shuyan Sun & Si Chen & Yafeng Wen, 2019. "Research on Short-Term Load Prediction Based on Seq2seq Model," Energies, MDPI, vol. 12(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3199-:d:259358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashfaq Ahmad & Nadeem Javaid & Abdul Mateen & Muhammad Awais & Zahoor Ali Khan, 2019. "Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach," Energies, MDPI, vol. 12(1), pages 1-21, January.
    2. Jin-Gyeom Kim & Bowon Lee, 2019. "Appliance Classification by Power Signal Analysis Based on Multi-Feature Combination Multi-Layer LSTM," Energies, MDPI, vol. 12(14), pages 1-24, July.
    3. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2019. "Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study," Energies, MDPI, vol. 12(7), pages 1-31, April.
    4. Juncheng Zhu & Zhile Yang & Monjur Mourshed & Yuanjun Guo & Yimin Zhou & Yan Chang & Yanjie Wei & Shengzhong Feng, 2019. "Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches," Energies, MDPI, vol. 12(14), pages 1-19, July.
    5. Ping Jiang & Qingping Zhou & Haiyan Jiang & Yao Dong, 2014. "An Optimized Forecasting Approach Based on Grey Theory and Cuckoo Search Algorithm: A Case Study for Electricity Consumption in New South Wales," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-13, June.
    6. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    7. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    8. Xiaoyu Zhang & Zhe Shu & Rui Wang & Tao Zhang & Yabing Zha, 2018. "Short-Term Load Interval Prediction Using a Deep Belief Network," Energies, MDPI, vol. 11(10), pages 1-18, October.
    9. Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, vol. 11(12), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Sabat & Dariusz Baczyński, 2021. "Usage of the Pareto Fronts as a Tool to Select Data in the Forecasting Process—A Short-Term Electric Energy Demand Forecasting Case," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Ding, Jiaqi & Zhao, Pu & Liu, Changjun & Wang, Xiaofang & Xie, Rong & Liu, Haitao, 2024. "From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment," Applied Energy, Elsevier, vol. 364(C).
    3. Shengzeng Li & Yiwen Zhong & Jiaxiang Lin, 2022. "AWS-DAIE: Incremental Ensemble Short-Term Electricity Load Forecasting Based on Sample Domain Adaptation," Sustainability, MDPI, vol. 14(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    2. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    3. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    6. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    7. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    8. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
    9. Waqas Ahmad & Nasir Ayub & Tariq Ali & Muhammad Irfan & Muhammad Awais & Muhammad Shiraz & Adam Glowacz, 2020. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine," Energies, MDPI, vol. 13(11), pages 1-17, June.
    10. Eduardo Caro & Jesús Juan, 2020. "Short-Term Load Forecasting for Spanish Insular Electric Systems," Energies, MDPI, vol. 13(14), pages 1-26, July.
    11. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    12. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    13. Fei Teng & Yafei Song & Xinpeng Guo, 2021. "Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    14. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    15. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    16. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    17. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    18. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    19. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    20. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3199-:d:259358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.