IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2909-d556801.html
   My bibliography  Save this article

Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids

Author

Listed:
  • Dorota Sawicka

    (Faculty of Nature and Engineering, J.R. Mayer–Institute for Energy Engineering, City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany)

  • Janusz T. Cieśliński

    (Faculty of Mechanical and Ship Technology, Institute of Energy, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdansk, Poland)

  • Slawomir Smolen

    (Faculty of Nature and Engineering, J.R. Mayer–Institute for Energy Engineering, City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany)

Abstract

The results of free convection heat transfer investigation from a horizontal, uniformly heated tube immersed in a nanofluid are presented. Experiments were performed with five base fluids, i.e., ethylene glycol (EG), distilled water (W) and the mixtures of EG and water with the ratios of 60/40, 50/50, 40/60 by volume, so the Rayleigh (Ra) number range was 3 × 10 4 ≤ Ra ≤ 1.3 × 10 6 and the Prandtl (Pr) number varied from 4.4 to 176. Alumina (Al 2 O 3 ) nanoparticles were tested at the mass concentrations of 0.01, 0.1 and 1%. Enhancement as well as deterioration of heat transfer performance compared to the base fluids were detected depending on the composition of the nanofluid. Based on the experimental results obtained, a correlation equation that describes the dependence of the average Nusselt (Nu) number on the Ra number, Pr number and concentration of nanoparticles is proposed.

Suggested Citation

  • Dorota Sawicka & Janusz T. Cieśliński & Slawomir Smolen, 2021. "Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids," Energies, MDPI, vol. 14(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2909-:d:556801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussein, Adnan M. & Sharma, K.V. & Bakar, R.A. & Kadirgama, K., 2014. "A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 734-743.
    2. Janusz T. Cieśliński & Slawomir Smolen & Dorota Sawicka, 2021. "Free Convection Heat Transfer from Horizontal Cylinders," Energies, MDPI, vol. 14(3), pages 1-22, January.
    3. Haddad, Zoubida & Oztop, Hakan F. & Abu-Nada, Eiyad & Mataoui, Amina, 2012. "A review on natural convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5363-5378.
    4. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luke Jurgen Briffa & Charise Cutajar & Tonio Sant & Daniel Buhagiar, 2022. "Numerical Modeling of the Thermal Behavior of Subsea Hydro-Pneumatic Energy Storage Accumulators Using Air and CO 2," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Florent Bunjaku & Risto V. Filkoski, 2023. "Optimisation of Thermal and Geometric Parameters of Cylindrical Fins during Natural Convection," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Janusz T. Cieśliński & Slawomir Smolen & Dorota Sawicka, 2021. "Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    3. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    4. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    5. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Janusz T. Cieśliński & Slawomir Smolen & Dorota Sawicka, 2021. "Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 14(12), pages 1-19, June.
    7. Shah, Tayyab Raza & Ali, Hafiz Muhammad & Zhou, Chao & Babar, Hamza & Janjua, Muhammad Mansoor & Doranehgard, Mohammad Hossein & Hussain, Abid & Sajjad, Uzair & Wang, Chi-Chuan & Sultan, Muhamad, 2022. "Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study," Energy, Elsevier, vol. 246(C).
    8. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    9. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    10. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    11. Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
    12. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    14. Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle," Mathematics, MDPI, vol. 9(10), pages 1-24, May.
    15. Garoosi, Faroogh & Jahanshaloo, Leila & Rashidi, Mohammad Mehdi & Badakhsh, Arash & Ali, Mohammed E., 2015. "Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 183-203.
    16. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    17. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Obai Younis & Milad Alizadeh & Ahmed Kadhim Hussein & Bagh Ali & Uddhaba Biswal & Emad Hasani Malekshah, 2022. "MHD Natural Convection and Radiation over a Flame in a Partially Heated Semicircular Cavity Filled with a Nanofluid," Mathematics, MDPI, vol. 10(8), pages 1-31, April.
    19. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    20. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2909-:d:556801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.