IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v254y2015icp183-203.html
   My bibliography  Save this article

Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model

Author

Listed:
  • Garoosi, Faroogh
  • Jahanshaloo, Leila
  • Rashidi, Mohammad Mehdi
  • Badakhsh, Arash
  • Ali, Mohammed E.

Abstract

A numerical study is carried out concerning natural convection heat transfer of nanofluid in a two-dimensional square cavity containing several pairs of heater and coolers (HACs). Walls of the cavity are insulated and several pairs of heater and coolers (HACs) with isothermal walls of Th and Tc (Th>Tc) are placed inside the cavity. Two-dimensional Navier–Stokes, energy and volume fraction equations are solved using finite volume discretization method. The effects of various design parameters on the heat transfer rate and distribution of nanoparticles such as Rayleigh number (104⩽Ra⩽107), volume fraction (0⩽φ⩽0.05) and size of nanoparticles (25nm⩽dp⩽145nm), type of the nanoparticles (Cu, Al2O3 and TiO2), nanofluid average temperature (294K⩽Tave⩽324K), number of the cooler, location of the heater and arrangement of the HAC are investigated. The simulation results are indicated that, HACs location has the most significant influence on the heat transfer rate. It is also found that at low Rayleigh numbers, the particle distribution is fairly non-uniform while at high Ra, particle distribution remains almost uniform. Moreover, it is found that there is an optimal volume fraction of the nano-particles at each Rayleigh number in which the maximum heat transfer rate can be obtained.

Suggested Citation

  • Garoosi, Faroogh & Jahanshaloo, Leila & Rashidi, Mohammad Mehdi & Badakhsh, Arash & Ali, Mohammed E., 2015. "Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 183-203.
  • Handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:183-203
    DOI: 10.1016/j.amc.2014.12.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haddad, Zoubida & Oztop, Hakan F. & Abu-Nada, Eiyad & Mataoui, Amina, 2012. "A review on natural convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5363-5378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Ying-Qing & Shah, Faqir & Khan, Sohail A. & Khan, M. Ijaz & Malik, M.Y. & Sun, Tian-Chuan, 2021. "Irreversibility analysis for axisymmetric nanomaterial flow towards a stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Sheikholeslami, M. & Vajravelu, K., 2017. "Nanofluid flow and heat transfer in a cavity with variable magnetic field," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 272-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    2. Dorota Sawicka & Janusz T. Cieśliński & Slawomir Smolen, 2021. "Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids," Energies, MDPI, vol. 14(10), pages 1-14, May.
    3. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    4. Aly, Abdelraheem M., 2020. "ISPH method for MHD convective flow from grooves inside a nanofluid-filled cavity under the effects of Soret and Dufour numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    5. Pal, S.K. & Bhattacharyya, S. & Pop, I., 2019. "A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 219-234.
    6. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    7. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    8. Sheremet, Mikhail A. & Revnic, Cornelia & Pop, Ioan, 2017. "Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 1-15.
    9. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    10. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Roslinda Nazar & Ezad Hafidz Hafidzuddin & Nadihah Wahi & Ioan Pop, 2019. "A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip," Energies, MDPI, vol. 12(7), pages 1-19, April.
    11. Raoudha Chaabane & Annunziata D’Orazio & Abdelmajid Jemni & Arash Karimipour & Ramin Ranjbarzadeh, 2021. "Convection Inside Nanofluid Cavity with Mixed Partially Boundary Conditions," Energies, MDPI, vol. 14(20), pages 1-20, October.
    12. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    13. Mushtaq T. Al-Asadi & Hussein A. Mohammed & Mark C. T. Wilson, 2022. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review," Energies, MDPI, vol. 15(3), pages 1-34, February.
    14. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:183-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.