IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2861-d555457.html
   My bibliography  Save this article

Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement

Author

Listed:
  • T. A. Anuja

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India)

  • M. Arun Noyal Doss

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India)

Abstract

Cogging torque is a critical dilemma in Permanent Magnet Brushless DC (PMBLDC) motors. In medium-low power PMBLDC motors, redundant vibrations and forbidding noises arise as a result of the harmonic magnetic forces created by cogging torque. This paper introduces a simple approach for minimizing cogging torque in PMBLDC motors by applying placement irregularities in rotor magnets. An angle shift in the rotor magnets in surface-mounted PMBLDC motors helps to attain magnet displacement. This displacement imparts an asymmetrical magnet structure to the rotor. Maintaining pole arc to pole pitch ratio (L/τ) of between 0.6 and 0.8, shifting angles from 1° to 8° were considered in order to analyze the effect of the angle shift on the rotor magnets. An analytical expression was also derived for finding the shifting angle with the minimum cogging torque in the PMBLDC motor by using the Virtual Work Method (VWM). The optimization of the shifting angle with minimum cogging torque was investigated using 3D Finite Element Analysis (FEA). A comparison of the simulation and analytical results of cogging torque was carried out. It was determined that the reduction of cogging torque in the analytical results showed good agreement with the FEA analysis.

Suggested Citation

  • T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2861-:d:555457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung-Woo Kwon & Jin-hee Lee & Wenliang Zhao & Byung-Il Kwon, 2018. "Flux-Switching Permanent Magnet Machine with Phase-Group Concentrated-Coil Windings and Cogging Torque Reduction Technique," Energies, MDPI, vol. 11(10), pages 1-11, October.
    2. Pierpaolo Dini & Sergio Saponara, 2020. "Design of an Observer-Based Architecture and Non-Linear Control Algorithm for Cogging Torque Reduction in Synchronous Motors," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Zbigniew Goryca & Sebastian Różowicz & Antoni Różowicz & Artur Pakosz & Marcin Leśko & Henryk Wachta, 2020. "Impact of Selected Methods of Cogging Torque Reduction in Multipolar Permanent-Magnet Machines," Energies, MDPI, vol. 13(22), pages 1-14, November.
    4. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Pierpaolo Dini & Sergio Saponara, 2019. "Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique," Energies, MDPI, vol. 12(11), pages 1-20, June.
    6. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2017. "Techniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores," Energies, MDPI, vol. 10(10), pages 1-17, October.
    7. Martin Sumega & Pavol Rafajdus & Marek Stulrajter, 2020. "Current Harmonics Controller for Reduction of Acoustic Noise, Vibrations and Torque Ripple Caused by Cogging Torque in PM Motors under FOC Operation," Energies, MDPI, vol. 13(10), pages 1-23, May.
    8. Myeong-Hwan Hwang & Hae-Sol Lee & Hyun-Rok Cha, 2018. "Analysis of Torque Ripple and Cogging Torque Reduction in Electric Vehicle Traction Platform Applying Rotor Notched Design," Energies, MDPI, vol. 11(11), pages 1-14, November.
    9. Dong-Woo Nam & Kang-Been Lee & Hyun-Jo Pyo & Min-Jae Jeong & Seo-Hee Yang & Won-Ho Kim & Hyung-Kwan Jang, 2021. "A Study on Core Skew Considering Manufacturability of Double-Layer Spoke-Type PMSM," Energies, MDPI, vol. 14(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fugang Zhai & Liu Yang & Wenqi Fu & Haisheng Tong & Tianyu Zhao, 2022. "The Effects of Permanent Magnet Segmentations on Electromagnetic Performance in Ironless Brushless DC Motors," Energies, MDPI, vol. 15(2), pages 1-18, January.
    2. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    3. Surat Khan & Abdin Pasund & Naseer Ahmad & Shoaib Ahmed & Hamid Ali Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Performance Investigation and Cogging Torque Reduction in a Novel Modular Stator PM Flux Reversal Machine," Energies, MDPI, vol. 15(6), pages 1-20, March.
    4. Andrzej Bień & Tomasz Drabek & Dawid Kara & Tomasz Kołacz, 2022. "Reduction in the Cogging Torques in the DCEFSM Motor by Changing the Geometry of the Rotor Teeth," Energies, MDPI, vol. 15(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaelim Jeong & Dongho Lee & Jin Hur, 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM," Energies, MDPI, vol. 12(20), pages 1-15, October.
    2. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.
    3. Cinzia Bernardeschi & Pierpaolo Dini & Andrea Domenici & Maurizio Palmieri & Sergio Saponara, 2020. "Formal Verification and Co-Simulation in the Design of a Synchronous Motor Control Algorithm," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Branislav Dobrucky & Slavomir Kascak & Michal Frivaldsky & Michal Prazenica, 2021. "Determination and Compensation of Non-Active Torques for Parallel HEV Using PMSM/IM Motor(s)," Energies, MDPI, vol. 14(10), pages 1-26, May.
    5. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    6. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    7. Rak-Won Son & Ju Lee, 2023. "Alternative Surface-Mounted Permanent Magnet Topology for Reducing Voltage and Torque Harmonics in Shaft Generators," Energies, MDPI, vol. 16(12), pages 1-17, June.
    8. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    9. Pierpaolo Dini & Sergio Saponara, 2020. "Design of an Observer-Based Architecture and Non-Linear Control Algorithm for Cogging Torque Reduction in Synchronous Motors," Energies, MDPI, vol. 13(8), pages 1-20, April.
    10. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    11. Hyungkwan Jang & Hyunwoo Kim & Huai-Cong Liu & Ho-Joon Lee & Ju Lee, 2021. "Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor," Energies, MDPI, vol. 14(5), pages 1-13, March.
    12. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    13. Pierpaolo Dini & Sergio Saponara, 2020. "Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System," Energies, MDPI, vol. 13(10), pages 1-20, May.
    14. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    15. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    16. Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
    17. Minhyeok Lee & Yunkyung Hwang & Kwanghee Nam, 2021. "Torque Ripple Minimizing of Uniform Slot Machines with Delta Rotor via Subdomain Analysis," Energies, MDPI, vol. 14(21), pages 1-18, November.
    18. Chung-Seong Lee & Kyoung-Soo Cha & Jin-Cheol Park & Myung-Seop Lim, 2020. "Tolerance-Insensitive Design of the Magnet Shape for a Surface Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(6), pages 1-16, March.
    19. Mingchuan Liu & Jibin Zou & Yongxiang Xu & Hua Lan & Guodong Yu, 2022. "Vibration Enhancement or Weakening Effect Caused by Permanent Magnet Synchronous Motor Radial and Tangential Force Formed by Tooth Harmonics," Energies, MDPI, vol. 15(3), pages 1-11, January.
    20. Muhammad Ramiz Zakir & Junaid Ikram & Saleem Iqbal Shah & Syed Sabir Hussain Bukhari & Salman Ali & Fabrizio Marignetti, 2022. "Performance Improvement of Axial Flux Permanent Magnet Machine with Phase Group Concentrated Coil Winding," Energies, MDPI, vol. 15(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2861-:d:555457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.