IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1047-d1596693.html
   My bibliography  Save this article

Automated Laboratory Stand for Determining the Cogging Torque of a Small Permanent Magnet Electric Machine Using the MATLAB Environment

Author

Listed:
  • Paweł Strączyński

    (Department of Electrical Devices and Automation, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Sebastian Różowicz

    (Department of Electrical Devices and Automation, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Krzysztof Baran

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland)

Abstract

The phenomenon of the occurrence of cogging torque is one of the basic disadvantages of permanent magnet motors. An important aspect of designing a machine with magnetoelectric excitation is the formation of the magnetic circuit in such a way as to reduce this negative phenomenon. Due to the tolerances of the production of motor components, an important part of the design work is research into the properties of the designed machines on the built prototypes. This paper presents concepts and implementations for the construction of an automated laboratory station to determine the course of cogging torque. The measurement method, the concept, and implementations of the construction of the laboratory station are presented in this paper. The paper is summarized by a discussion of the results of laboratory tests on selected permanent magnet motors.

Suggested Citation

  • Paweł Strączyński & Sebastian Różowicz & Krzysztof Baran, 2025. "Automated Laboratory Stand for Determining the Cogging Torque of a Small Permanent Magnet Electric Machine Using the MATLAB Environment," Energies, MDPI, vol. 18(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1047-:d:1596693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyan Zhang & Ming Zhang & Jing Yin & Jie Wu & Cunxiang Yang, 2022. "An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification," Energies, MDPI, vol. 15(3), pages 1-13, January.
    2. Zbigniew Goryca & Sebastian Różowicz & Antoni Różowicz & Artur Pakosz & Marcin Leśko & Henryk Wachta, 2020. "Impact of Selected Methods of Cogging Torque Reduction in Multipolar Permanent-Magnet Machines," Energies, MDPI, vol. 13(22), pages 1-14, November.
    3. Franjo Pranjić & Peter Virtič, 2024. "Cogging Torque Reduction Techniques in Axial Flux Permanent Magnet Machines: A Review," Energies, MDPI, vol. 17(5), pages 1-19, February.
    4. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.
    2. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    3. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    4. Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
    5. Surat Khan & Abdin Pasund & Naseer Ahmad & Shoaib Ahmed & Hamid Ali Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Performance Investigation and Cogging Torque Reduction in a Novel Modular Stator PM Flux Reversal Machine," Energies, MDPI, vol. 15(6), pages 1-20, March.
    6. Sebastian Różowicz & Zbigniew Goryca & Antoni Różowicz, 2022. "Permanent Magnet Generator for a Gearless Backyard Wind Turbine," Energies, MDPI, vol. 15(10), pages 1-12, May.
    7. Akihisa Hattori & Toshihiko Noguchi & Kazuhiro Murakami, 2022. "Mathematical Model Derivation and Experimental Verification of Novel Consequent-Pole Adjustable Speed PM Motor," Energies, MDPI, vol. 15(17), pages 1-25, August.
    8. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.
    9. Nikolaos Chrysochoidis-Antsos & Gerard J.W. van Bussel & Jan Bozelie & Sander M. Mertens & Ad J.M. van Wijk, 2021. "Performance Characteristics of A Micro Wind Turbine Integrated on A Noise Barrier," Energies, MDPI, vol. 14(5), pages 1-29, February.
    10. Dong-Woo Nam & Kang-Been Lee & Hyun-Jo Pyo & Min-Jae Jeong & Seo-Hee Yang & Won-Ho Kim & Hyung-Kwan Jang, 2021. "A Study on Core Skew Considering Manufacturability of Double-Layer Spoke-Type PMSM," Energies, MDPI, vol. 14(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1047-:d:1596693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.