IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p67-d468128.html
   My bibliography  Save this article

Performance Evaluation of a Stator Modular Ring Generator for a Shrouded Wind Turbine

Author

Listed:
  • Jefferson A. Oliveira

    (Institute of Agricultural and Technological Sciences, Mechanical Engineering, Federal University of Rondonópolis, Rondonópolis 78736-900, Brazil)

  • Ály F. Flores Filho

    (Engineering School, Electrical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90035-190, Brazil)

Abstract

This paper presents the performance evaluation of a stator modular ring permanent-magnet generator to be embedded in a shrouded wind turbine. That is done to increase the power conversion for the same turbine area when compared to more conventional ones. An adapted structure allows the assembling of the prototype, aiming to verify its performance under controlled conditions. Aiming to verify the accuracy of an analytical subdomain model for a large diameter machine, the evaluation compares the results obtained by the electromagnetic finite element method and experimental measurements. The results of the components of the air-gap flux density, back EMF and electromagnetic torque obtained by the proposed analytical model and finite-element method are in good agreement with the experimental measurements. The experimental measurements of the iron loss and copper loss show that the prototype efficiency can reach 90% approximately.

Suggested Citation

  • Jefferson A. Oliveira & Ály F. Flores Filho, 2020. "Performance Evaluation of a Stator Modular Ring Generator for a Shrouded Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:67-:d:468128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Zhao & Yun Zheng & Congcong Zhu & Xiangdong Liu & Bin Li, 2017. "A Novel Modular-Stator Outer-Rotor Flux-Switching Permanent-Magnet Motor," Energies, MDPI, vol. 10(7), pages 1-19, July.
    2. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    2. Peace-Maker Masukume & Golden Makaka & Patrick Mukumba, 2018. "Optimization of the Power Output of a Bare Wind Turbine by the Use of a Plain Conical Diffuser," Sustainability, MDPI, vol. 10(8), pages 1-7, July.
    3. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    4. Sidaard Gunasekaran & Madison Peyton & Neal Novotny, 2022. "Aerodynamic Interactions of Wind Lenses at Close Proximities," Energies, MDPI, vol. 15(13), pages 1-17, June.
    5. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    6. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    7. Ahmad Fazlizan & Wen Tong Chong & Sook Yee Yip & Wooi Ping Hew & Sin Chew Poh, 2015. "Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 8(7), pages 1-19, June.
    8. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    9. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    10. Ye, Jianjun & Cheng, Yanglin & Xie, Junlong & Huang, Xiaohong & Zhang, Yuan & Hu, Siyao & Salem, Shehab & Wu, Jiejun, 2020. "Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts," Renewable Energy, Elsevier, vol. 152(C), pages 1292-1301.
    11. Antonio García Auyanet & Rangga E. Santoso & Hrishikesh Mohan & Sanvay S. Rathore & Debapriya Chakraborty & Patrick G. Verdin, 2022. "CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    12. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    13. Tariq Abdulsalam Khamlaj & Markus Peer Rumpfkeil, 2017. "Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines," Energies, MDPI, vol. 10(1), pages 1-19, January.
    14. Marco Palmieri & Salvatore Bozzella & Giuseppe Leonardo Cascella & Marco Bronzini & Marco Torresi & Francesco Cupertino, 2018. "Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators," Energies, MDPI, vol. 11(10), pages 1-21, October.
    15. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    16. Søren Hjort & Helgi Larsen, 2015. "Rotor Design for Diffuser Augmented Wind Turbines," Energies, MDPI, vol. 8(10), pages 1-39, September.
    17. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    18. Zuhaib Ashfaq Khan & Hafiz Husnain Raza Sherazi & Mubashir Ali & Muhammad Ali Imran & Ikram Ur Rehman & Prasun Chakrabarti, 2021. "Designing a Wind Energy Harvester for Connected Vehicles in Green Cities," Energies, MDPI, vol. 14(17), pages 1-18, August.
    19. Jun-Feng Hu & Wen-Xue Wang, 2015. "Upgrading a Shrouded Wind Turbine with a Self-Adaptive Flanged Diffuser," Energies, MDPI, vol. 8(6), pages 1-19, June.
    20. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:67-:d:468128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.