IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15343-d976970.html
   My bibliography  Save this article

CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines

Author

Listed:
  • Antonio García Auyanet

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

  • Rangga E. Santoso

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

  • Hrishikesh Mohan

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

  • Sanvay S. Rathore

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

  • Debapriya Chakraborty

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

  • Patrick G. Verdin

    (Energy & Sustainability, Cranfield University, Cranfield MK43 0AL, UK)

Abstract

The need for an increase in energy harvesting has led to novel ideas and designs to extract more power from wind. One innovative solution is through the use of J-shaped blades for Darrieus vertical axis wind turbines (VAWTs), which is based on the removal of a portion of a conventional blade, either on the pressure or suction side. Although improvements in the self-starting capabilities of VAWTs have been reported when using such blades, the literature only studied hollow blades, showing a hair-like structure. This work numerically investigates six different J-shaped designs. A turbine comprising NACA0015-based blades forms the base case and is used to evaluate the 2D numerical models. Results show that blades with an external cut systematically outperform those designed with an internal cut. In addition, all proposed cut-based designs are shown to improve the starting torque of the turbine, reaching a 135% increase compared to the base model.

Suggested Citation

  • Antonio García Auyanet & Rangga E. Santoso & Hrishikesh Mohan & Sanvay S. Rathore & Debapriya Chakraborty & Patrick G. Verdin, 2022. "CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15343-:d:976970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    2. Antonio García Auyanet & Patrick G. Verdin, 2022. "Numerical Study of the Effect of Flap Geometry in a Multi-Slot Ducted Wind Turbine," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Gupta, R. & Biswas, A. & Sharma, K.K., 2008. "Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor," Renewable Energy, Elsevier, vol. 33(9), pages 1974-1981.
    4. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao, 2015. "The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine," Energy, Elsevier, vol. 89(C), pages 819-834.
    5. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    6. Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation," Energy, Elsevier, vol. 248(C).
    7. Zamani, Mahdi & Maghrebi, Mohammad Javad & Varedi, Seyed Rasoul, 2016. "Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation," Renewable Energy, Elsevier, vol. 95(C), pages 109-126.
    8. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    9. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.
    11. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzadi, Ramin & Zanj, Amir & Bazargan, Majid, 2024. "Effect of baffles on efficiency of darrieus vertical axis wind turbines equipped with J-type blades," Energy, Elsevier, vol. 305(C).
    2. Farzadi, Ramin & Bazargan, Majid, 2023. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzadi, Ramin & Bazargan, Majid, 2023. "3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode," Energy, Elsevier, vol. 278(PB).
    2. Farzadi, Ramin & Zanj, Amir & Bazargan, Majid, 2024. "Effect of baffles on efficiency of darrieus vertical axis wind turbines equipped with J-type blades," Energy, Elsevier, vol. 305(C).
    3. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    4. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    6. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Power prediction formula for blade design and optimization of Dual Darrieus Wind Turbines based on Taguchi Method and Genetic Expression Programming model," Renewable Energy, Elsevier, vol. 192(C), pages 583-605.
    8. Lin Pan & Ze Zhu & Haodong Xiao & Leichong Wang, 2021. "Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(19), pages 1-29, October.
    9. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    10. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    11. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    12. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    13. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    14. Palanisamy Mohan Kumar & Krishnamoorthi Sivalingam & Teik-Cheng Lim & Seeram Ramakrishna & He Wei, 2019. "Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1," Clean Technol., MDPI, vol. 1(1), pages 1-20, August.
    15. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    16. Chenguang Song & Guoqing Wu & Weinan Zhu & Xudong Zhang & Jicong Zhao, 2019. "Numerical Investigation on the Effects of Airfoil Leading Edge Radius on the Aerodynamic Performance of H-Rotor Darrieus Vertical Axis Wind Turbine," Energies, MDPI, vol. 12(19), pages 1-14, October.
    17. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    18. Antonio García Auyanet & Patrick G. Verdin, 2022. "Numerical Study of the Effect of Flap Geometry in a Multi-Slot Ducted Wind Turbine," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    19. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    20. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.

    More about this item

    Keywords

    blade optimization; VAWT; starting torque; J-shape; NACA0015; CFD; k - ω;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15343-:d:976970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.