IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2755-d668427.html
   My bibliography  Save this article

Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter

Author

Listed:
  • Julio C. Rosas-Caro

    (Facultad de Ingenieria, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

  • Pedro M. García-Vite

    (Tecnologico Nacional de Mexico, Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo s/n Col. Los Mangos, Ciudad Madero 89440, Mexico)

  • Alma Rodríguez

    (Facultad de Ingenieria, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico
    Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara 44430, Mexico)

  • Abraham Mendoza

    (Facultad de Ingenieria, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

  • Avelina Alejo-Reyes

    (Facultad de Ingenieria, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico)

  • Erik Cuevas

    (Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara 44430, Mexico)

  • Francisco Beltran-Carbajal

    (Departamento de Energía, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Mexico City 02200, Mexico)

Abstract

This paper proposes an optimal methodology based on the Differential Evolution algorithm for obtaining the set of duty cycles of a recently proposed power electronics converter with input current ripple cancelation capability. The converter understudy was recently introduced to the state-of-the-art as the interleaved connection of two unequal converters to achieve low input current ripple. A latter contribution proposed a so-called proportional strategy. The strategy can be described as the equations to relate the duty cycles of the unequal power stages. This article proposes a third switching strategy that provides a lower input current ripple than the proportional strategy. This is made by considering duty cycles independently of each other instead of proportionally. The proposed method uses the Differential Evolution algorithm to determine the optimal switching pattern that allows high quality at the input current side, given the reactive components, the switching frequency, and power levels. The mathematical model of the converter is analyzed, and thus, the decision variables and the optimization problem are well set. The proposed methodology is validated through numerical experimentation, which shows that the proposed method achieves lower input current ripples than the proportional strategy.

Suggested Citation

  • Julio C. Rosas-Caro & Pedro M. García-Vite & Alma Rodríguez & Abraham Mendoza & Avelina Alejo-Reyes & Erik Cuevas & Francisco Beltran-Carbajal, 2021. "Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2755-:d:668427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Saffar, Mustafa A. & Ismail, Esam H., 2015. "A high voltage ratio and low stress DC–DC converter with reduced input current ripple for fuel cell source," Renewable Energy, Elsevier, vol. 82(C), pages 35-43.
    2. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
    3. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goudarzian, Alireza & Khosravi, Adel & Raeisi, Heidar Ali, 2020. "Analysis of a step-up dc/dc converter with capability of right-half plane zero cancellation," Renewable Energy, Elsevier, vol. 157(C), pages 1156-1170.
    2. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    4. Chih-Lung Shen & Hong-Yu Chen & Po-Chieh Chiu, 2015. "Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems," Energies, MDPI, vol. 8(9), pages 1-17, September.
    5. García–Vite, Pedro Martín & Soriano–Rangel, Carlos Abraham & Rosas–Caro, Julio Cesar & Mancilla–David, Fernando, 2017. "A DC–DC converter with quadratic gain and input current ripple cancelation at a selectable duty cycle," Renewable Energy, Elsevier, vol. 101(C), pages 431-436.
    6. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    7. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    8. Faqiang Wang & Herbert Ho-Ching Iu & Jing Li, 2018. "A Novel Step-Up Converter with an Ultrahigh Voltage Conversion Ratio," Energies, MDPI, vol. 11(10), pages 1-16, October.
    9. Arthur H. R. Rosa & Thiago M. De Souza & Lenin M. F. Morais & Seleme I. Seleme, 2018. "Adaptive and Nonlinear Control Techniques Applied to SEPIC Converter in DC-DC, PFC, CCM and DCM Modes Using HIL Simulation," Energies, MDPI, vol. 11(3), pages 1-22, March.
    10. Guilbert, Damien & Gaillard, Arnaud & N'Diaye, Abdoul & Djerdir, Abdesslem, 2016. "Power switch failures tolerance and remedial strategies of a 4-leg floating interleaved DC/DC boost converter for photovoltaic/fuel cell applications," Renewable Energy, Elsevier, vol. 90(C), pages 14-27.
    11. Vibha Kamaraj & N. Chellammal & Bharatiraja Chokkalingam & Josiah Lange Munda, 2020. "Minimization of Cross-Regulation in PV and Battery Connected Multi-Input Multi-Output DC to DC Converter," Energies, MDPI, vol. 13(24), pages 1-29, December.
    12. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    13. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    14. Wang, Faqiang, 2018. "A novel quadratic Boost converter with low current and voltage stress on power switch for fuel-cell system applications," Renewable Energy, Elsevier, vol. 115(C), pages 836-845.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2755-:d:668427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.