IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6534-d460161.html
   My bibliography  Save this article

Minimization of Cross-Regulation in PV and Battery Connected Multi-Input Multi-Output DC to DC Converter

Author

Listed:
  • Vibha Kamaraj

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India)

  • N. Chellammal

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India)

  • Bharatiraja Chokkalingam

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603 203, India)

  • Josiah Lange Munda

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa)

Abstract

This paper proposes a digital model predictive controller (DMPC) for a multi-input multi-output (MIMO) DC-DC converter interfaced with renewable energy resources in a hybrid system. Such MIMO systems generally suffer from cross-regulation, which seriously impacts the stability and speed of response of the system. To solve the contemporary issues in a MIMO system, a controller is required to attenuate the cross-regulation. Therefore, this paper proposes a controller, which increases speed of response and maintains stable output by regulating the load voltage independently. The inductor current and the capacitor voltage of the proposed converter are considered as the controlling parameters. With the aid of Forward Euler’s procedure, the future values are computed for the instantaneous values of controlling parameters. Cost function defines the control action by the predicted values that describe the system performance and establish optimal condition at which the output of the system is required. This allows proper switching of the system, thereby helping to regulate the output voltages. Thus, for any variation in load, the DMPC ensures steady switching operation and minimization of cross-regulation. To prove the efficacy of proposed DMPC controller, simulations followed by the experimental results are executed on a hybrid system consisting of dual-input dual-output (DIDO) positive Super-Lift Luo converter (PSLLC) interfaced with photovoltaic renewable energy resource. The results thus obtained are compared with the conventional PID (proportional integrative derivative) controller for validation and prove that the DMPC controller is able to control the cross-regulation effectively.

Suggested Citation

  • Vibha Kamaraj & N. Chellammal & Bharatiraja Chokkalingam & Josiah Lange Munda, 2020. "Minimization of Cross-Regulation in PV and Battery Connected Multi-Input Multi-Output DC to DC Converter," Energies, MDPI, vol. 13(24), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6534-:d:460161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Anuradha & N. Chellammal & Md Saquib Maqsood & S. Vijayalakshmi, 2019. "Design and Analysis of Non-Isolated Three-Port SEPIC Converter for Integrating Renewable Energy Sources," Energies, MDPI, vol. 12(2), pages 1-32, January.
    2. Deepak Elamalayil Soman & Mats Leijon, 2017. "Cross-Regulation Assessment of DIDO Buck-Boost Converter for Renewable Energy Application," Energies, MDPI, vol. 10(7), pages 1-11, June.
    3. S. Augusti Lindiya & N. Subashini & K. Vijayarekha, 2019. "Cross Regulation Reduced Optimal Multivariable Controller Design for Single Inductor DC-DC Converters," Energies, MDPI, vol. 12(3), pages 1-26, February.
    4. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    5. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    2. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    2. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Denis Sidorov & Fang Liu & Yonghui Sun, 2020. "Machine Learning for Energy Systems," Energies, MDPI, vol. 13(18), pages 1-6, September.
    4. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    5. Xiaocong Li & Xin Chen, 2021. "A Multi-Index Feedback Linearization Control for a Buck-Boost Converter," Energies, MDPI, vol. 14(5), pages 1-14, March.
    6. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    7. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    8. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    9. Félix Dubuisson & Miloud Rezkallah & Hussein Ibrahim & Ambrish Chandra, 2021. "Real-Time Implementation of the Predictive-Based Control with Bacterial Foraging Optimization Technique for Power Management in Standalone Microgrid Application," Energies, MDPI, vol. 14(6), pages 1-15, March.
    10. Simin Aghaei Amirkhizi & Yaghoub Mahmoudi & Ali Salimi Shamloo, 2022. "Legendre polynomials approximation method for solving Volterra integral equations of the first kind with discontinuous kernels," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 492-504, June.
    11. Mehmet Ali Yildirim & Marzena Nowak-Ocłoń, 2020. "Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-15, December.
    12. Aleksandr N. Tynda & Denis N. Sidorov, 2022. "Inverse Problem for the Integral Dynamic Models with Discontinuous Kernels," Mathematics, MDPI, vol. 10(21), pages 1-9, October.
    13. Gerardo Humberto Valencia-Rivera & Luis Ramon Merchan-Villalba & Guillermo Tapia-Tinoco & Jose Merced Lozano-Garcia & Mario Alberto Ibarra-Manzano & Juan Gabriel Avina-Cervantes, 2020. "Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and Nonlinear Loads," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    14. Taghavifar, Hadi & Zomorodian, Zahra Sadat, 2021. "Techno-economic viability of on grid micro-hybrid PV/wind/Gen system for an educational building in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    16. Marcos Vinicius Mosconi Ewerling & Telles Brunelli Lazzarin & Carlos Henrique Illa Font, 2022. "Modular SEPIC-Based Isolated dc–dc Converter with Reduced Voltage Stresses across the Semiconductors," Energies, MDPI, vol. 15(21), pages 1-21, October.
    17. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    18. Dmitriy N. Karamov & Pavel V. Ilyushin & Konstantin V. Suslov, 2022. "Electrification of Rural Remote Areas Using Renewable Energy Sources: Literature Review," Energies, MDPI, vol. 15(16), pages 1-13, August.
    19. Kailun Wang & Qiang Song & Shukai Xu, 2022. "Analysis and Design of the Energy Storage Requirement of Hybrid Modular Multilevel Converters Using Numerical Integration and Iterative Solution," Energies, MDPI, vol. 15(3), pages 1-18, February.
    20. Julio C. Rosas-Caro & Pedro M. García-Vite & Alma Rodríguez & Abraham Mendoza & Avelina Alejo-Reyes & Erik Cuevas & Francisco Beltran-Carbajal, 2021. "Differential Evolution Based Algorithm for Optimal Current Ripple Cancelation in an Unequal Interleaved Power Converter," Mathematics, MDPI, vol. 9(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6534-:d:460161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.