IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2103-d349359.html
   My bibliography  Save this article

Influence of the Meteorological Record Length on the Generation of Representative Weather Files

Author

Listed:
  • Michele Libralato

    (Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, 3100 Udine, Italy)

  • Giovanni Murano

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

  • Alessandra De Angelis

    (Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, 3100 Udine, Italy)

  • Onorio Saro

    (Polytechnic Department of Engineering and Architecture, Università degli Studi di Udine, 3100 Udine, Italy)

  • Vincenzo Corrado

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Heat and moisture (HM) transfer simulations of building envelopes and whole building energy simulations require adequate weather files. The common approach is to use weather data of reference years constructed from meteorological records. The weather record affects the capability of representing the real weather of the resulting reference years. In this paper the problem of the influence of the length of the records on the representativeness of the reference years is addressed and its effects are evaluated also for the applicative case of the moisture accumulation risk analysis with the Glaser Method and with DELPHIN 6, confirming that records shorter than 10 years could lead to less representative reference years. On the other hand, it is shown that reference years obtained from longer periods are not representative of the most recent years, which present higher dry-bulb air temperatures due to a short-term climate change effect observed in all the considered weather records. An alternative representative year (Moisture Representative Year) to be used in building energy simulations with a strong dependence on moisture is presented.

Suggested Citation

  • Michele Libralato & Giovanni Murano & Alessandra De Angelis & Onorio Saro & Vincenzo Corrado, 2020. "Influence of the Meteorological Record Length on the Generation of Representative Weather Files," Energies, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2103-:d:349359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Chinese, Damiana & Santin, Maurizio & Saro, Onorio, 2017. "Water-energy and GHG nexus assessment of alternative heat recovery options in industry: A case study on electric steelmaking in Europe," Energy, Elsevier, vol. 141(C), pages 2670-2687.
    3. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    4. Maurizio Santin & Damiana Chinese & Onorio Saro & Alessandra De Angelis & Alberto Zugliano, 2019. "Carbon and Water Footprint of Energy Saving Options for the Air Conditioning of Electric Cabins at Industrial Sites," Energies, MDPI, vol. 12(19), pages 1-22, September.
    5. Giovanni Pernigotto & Alessandro Prada & Francesca Cappelletti & Andrea Gasparella, 2017. "Impact of Reference Years on the Outcome of Multi-Objective Optimization for Building Energy Refurbishment," Energies, MDPI, vol. 10(11), pages 1-23, November.
    6. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naga Venkata Sai Kumar Manapragada & Anoop Kumar Shukla & Gloria Pignatta & Komali Yenneti & Deepika Shetty & Bibhu Kalyan Nayak & Venkataramana Boorla, 2022. "Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    2. Michele Libralato & Alessandra De Angelis & Giulia Tornello & Onorio Saro & Paola D’Agaro & Giovanni Cortella, 2021. "Evaluation of Multiyear Weather Data Effects on Hygrothermal Building Energy Simulations Using WUFI Plus," Energies, MDPI, vol. 14(21), pages 1-15, November.
    3. Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
    4. Yuqing Zhang & Bin Li & Luca Caneparo & Qinglin Meng & Weihong Guo & Xiao Liu, 2023. "Physical Environment Study on Social Housing Stock in Italian Western Alps for Healthy and Sustainable Communities," Land, MDPI, vol. 12(7), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    3. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    4. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    5. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    6. Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
    7. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    9. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    10. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    11. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    12. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    14. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    15. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
    16. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    18. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    19. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    20. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2103-:d:349359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.