IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11554-d659993.html
   My bibliography  Save this article

Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale

Author

Listed:
  • Fahad Haneef

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Giovanni Pernigotto

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Andrea Gasparella

    (Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Jérôme Henri Kämpf

    (Energy Informatics Group, Idiap Research Institute, 1920 Martigny, Switzerland)

Abstract

Nearly-zero energy buildings are now a standard for new constructions. However, the real challenge for a decarbonized society relies in the renovation of the existing building stock, selecting energy efficiency measures considering not only the energy performance but also the economic and sustainability ones. Even if the literature is full of examples coupling building energy simulation with multi-objective optimization for the identification of the best measures, the adoption of such approaches is still limited for district and urban scale simulation, often because of lack of complete data inputs and high computational requirements. In this research, a new methodology is proposed, combining the detailed geometric characterization of urban simulation tools with the simplification provided by “ building archetype ” modeling, in order to ensure the development of robust models for the multi-objective optimization of retrofit interventions at district scale. Using CitySim as an urban scale energy modeling tool, a residential district built in the 1990s in Bolzano, Italy, was studied. Different sets of renovation measures for the building envelope and three objectives —i.e., energy, economic and sustainability performances, were compared. Despite energy savings from 29 to 46%, energy efficiency measures applied just to the building envelope were found insufficient to meet the carbon neutrality goals without interventions to the system, in particular considering mechanical ventilation with heat recovery. Furthermore, public subsidization has been revealed to be necessary, since none of the proposed measures is able to pay back the initial investment for this case study.

Suggested Citation

  • Fahad Haneef & Giovanni Pernigotto & Andrea Gasparella & Jérôme Henri Kämpf, 2021. "Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11554-:d:659993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.
    2. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    3. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    4. Intergovernmental Panel on Climate Change IPCC, 2008. "Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007: Synthesis Report," Working Papers id:1325, eSocialSciences.
    5. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    6. Xuan Luo & Tianzhen Hong & Yu-Hang Tang, 2020. "Modeling Thermal Interactions between Buildings in an Urban Context," Energies, MDPI, vol. 13(9), pages 1-17, May.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    9. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    10. Giovanni Pernigotto & Alessandro Prada & Francesca Cappelletti & Andrea Gasparella, 2017. "Impact of Reference Years on the Outcome of Multi-Objective Optimization for Building Energy Refurbishment," Energies, MDPI, vol. 10(11), pages 1-23, November.
    11. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    12. Ki Uhn Ahn & Deuk Woo Kim & Young Jin Kim & Seong Hwan Yoon & Cheol Soo Park, 2016. "Issues to Be Solved for Energy Simulation of An Existing Office Building," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    13. Hong Jin & Peng Cui & Nyuk Hien Wong & Marcel Ignatius, 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Battini & Giovanni Pernigotto & Federica Morandi & Andrea Gasparella & Jérôme Henri Kämpf, 2023. "Assessment of Subsidization Strategies for Multi-Objective Optimization of Energy Efficiency Measures for Building Renovation at District Scale," Energies, MDPI, vol. 16(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    2. Andrea Zambito & Giovanni Pernigotto & Simon Pezzutto & Andrea Gasparella, 2022. "Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    3. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    7. Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    8. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    9. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    10. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    11. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    12. Johari, F. & Peronato, G. & Sadeghian, P. & Zhao, X. & Widén, J., 2020. "Urban building energy modeling: State of the art and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    13. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    14. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    15. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    17. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    18. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    19. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon), 2019. "Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations," Applied Energy, Elsevier, vol. 250(C), pages 1402-1417.
    20. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11554-:d:659993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.