IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4554-d407972.html
   My bibliography  Save this article

Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study

Author

Listed:
  • Mohamed Iqbal Shajahan

    (Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India)

  • Jee Joe Michael

    (Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India)

  • M. Arulprakasajothi

    (Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India)

  • Sivan Suresh

    (Department of Mechanical Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

  • Emad Abouel Nasr

    (Department of Industrial Engineering, Faculty of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
    Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt)

  • H. M. A. Hussein

    (Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt)

Abstract

There is a significant enhancement of the heat transfer rate with the usage of nanofluid. This article describes a study of the combination of using nanofluid with inserts, which has proved itself in attaining higher benefits in a heat exchanger, such as the radiator in automobiles, industries, etc. Nanofluids are emerging as alternative fluids for heat transfer applications due to enhanced thermal properties. In this paper, the thermal hydraulic performance of ZrO 2 , awater-based nanofluid with various volume concentrations of 0.1%, 0.25%, and 0.5%, and staggered conical strip inserts with three different twist ratios of 2.5, 3.5, and 4.5 in forward and backward flow patterns were experimentally tested under a fully developed laminar flow regime of 0–50 lphthrough a horizontal test pipe section with a length of 1 m with a constant wall heat flux of 280 W as the input boundary condition. The temperatures at equidistant position and across the test section were measured using K-type thermocouples. The pressure drop across the test section was measured using a U-tube manometer. The observed results showed that the use of staggered conical strip inserts improved the heat transfer rates up to that of 130.5%, 102.7%, and 64.52% in the forward arrangement, and similarly 145.03%, 116.57%, and 80.92% in the backward arrangement with the twist ratios of 2.5, 3.5, and 4.5 at the 0.5% volume concentration of ZrO 2 nanofluid. It was also seen that the improvement in heat transfer was comparatively lower for the other two volume concentrations considered in this study. The twist ratio generates more swirl flow, disrupting the thermal hydraulic boundary layer. Nanofluids with a higher volume concentration lead to higher heat transfer due to higher effective thermal conductivity of the prepared nanofluid. The thermal performance factor (TPF) with conical strip inserts at all volume concentrations of nanofluids was perceived as greater than 1. A sizable thermal performance ratio of 1.62 was obtained for the backward-arranged conical strip insert with 2.5 as the twist ratio and a volume concentration of 0.5% ZrO 2 /deionized water nanofluid. Correlations were developed for the Nusselt number and friction factor based on the obtained experimental data with the help of regression analysis.

Suggested Citation

  • Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4554-:d:407972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Budi Kristiawan & Budi Santoso & Agung Tri Wijayanta & Muhammad Aziz & Takahiko Miyazaki, 2018. "Heat Transfer Enhancement of TiO 2 /Water Nanofluid at Laminar and Turbulent Flows: A Numerical Approach for Evaluating the Effect of Nanoparticle Loadings," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Saadah Ahmad & Shahrir Abdullah & Kamaruzzaman Sopian, 2020. "Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al 2 O 3 /Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape," Energies, MDPI, vol. 13(8), pages 1-24, April.
    3. Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
    4. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    5. Varun, & Garg, M.O. & Nautiyal, Himanshu & Khurana, Sourabh & Shukla, M.K., 2016. "Heat transfer augmentation using twisted tape inserts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 193-225.
    6. Ali J. Chamkha & Fatih Selimefendigil, 2018. "Forced Convection of Pulsating Nanofluid Flow over a Backward Facing Step with Various Particle Shapes," Energies, MDPI, vol. 11(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianpiero Colangelo & Noemi Francesca Diamante & Marco Milanese & Giuseppe Starace & Arturo de Risi, 2021. "A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup," Energies, MDPI, vol. 14(18), pages 1-56, September.
    2. Piotr Bogusław Jasiński & Michał Jan Kowalczyk & Artur Romaniak & Bartosz Warwas & Damian Obidowski & Artur Gutkowski, 2021. "Investigation of Thermal-Flow Characteristics of Pipes with Helical Micro-Fins of Variable Height," Energies, MDPI, vol. 14(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    2. Chandran, M. Neelesh & Manikandan, S. & Suganthi, K.S. & Rajan, K.S., 2017. "Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications," Energy, Elsevier, vol. 140(P1), pages 27-39.
    3. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    4. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    5. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    6. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    7. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    8. Agung Tri Wijayanta & Pranowo & Mirmanto & Budi Kristiawan & Muhammad Aziz, 2019. "Internal Flow in an Enhanced Tube Having Square-cut Twisted Tape Insert," Energies, MDPI, vol. 12(2), pages 1-12, January.
    9. Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
    10. Kohilavani Naganthran & Roslinda Nazar & Zailan Siri & Ishak Hashim, 2021. "Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    11. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Natalia C. Roşca & Alin V. Roşca & Emad H. Aly & Ioan Pop, 2021. "Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
    13. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    14. Budi Kristiawan & Agung Tri Wijayanta & Koji Enoki & Takahiko Miyazaki & Muhammad Aziz, 2019. "Heat Transfer Enhancement of TiO 2 /Water Nanofluids Flowing Inside a Square Minichannel with a Microfin Structure: A Numerical Investigation," Energies, MDPI, vol. 12(16), pages 1-21, August.
    15. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    16. Pasu Poonpakdee & Boonsong Samutpraphut & Chinaruk Thianpong & Suriya Chokphoemphun & Smith Eiamsa-ard & Naoki Maruyama & Masafumi Hirota, 2022. "Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms," Energies, MDPI, vol. 15(23), pages 1-17, November.
    17. Davide Iaria & Xin Zhou & Jafar Al Zaili & Qiang Zhang & Gang Xiao & Abdulnaser Sayma, 2019. "Development of a Model for Performance Analysis of a Honeycomb Thermal Energy Storage for Solar Power Microturbine Applications," Energies, MDPI, vol. 12(20), pages 1-19, October.
    18. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    19. Hamed Bagheri & Mohammadali Behrang & Ehsanolah Assareh & Mohsen Izadi & Mikhail A. Sheremet, 2019. "Free Convection of Hybrid Nanofluids in a C-Shaped Chamber under Variable Heat Flux and Magnetic Field: Simulation, Sensitivity Analysis, and Artificial Neural Networks," Energies, MDPI, vol. 12(14), pages 1-17, July.
    20. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4554-:d:407972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.