IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2082-d348542.html
   My bibliography  Save this article

Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass

Author

Listed:
  • Krzysztof Skrzypkowski

    (Faculty of Mining and Geoengineering, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Cracow, Poland)

  • Waldemar Korzeniowski

    (Faculty of Mining and Geoengineering, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Cracow, Poland)

  • Krzysztof Zagórski

    (Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Cracow, Poland)

  • Anna Zagórska

    (Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Cracow, Poland)

Abstract

The article presents a novel yielding mechanism, especially designed for the rock bolt support. Mechanical rock bolts with an expansion head and equipped with one, two, four and six dome bearing plates were tested in the laboratory conditions. Furthermore, in the Phase2D numerical program, five room and pillar widths were modeled. The main aim of numerical modeling was to determine the maximal range of the rock damage area and the total displacements in the expanded room. The models were made for a room and pillar method with a roof sag for copper ore deposits in the Legnica-Głogów Copper District in Poland. Additionally, in the article a load model of the rock bolt support as a result of a geomechanical seismic event is presented. Based on the results of laboratory tests (load–displacement characteristics), the strain energy of the bolt support equipped with the yielding device in the form of dome bearing plates was determined and compared with the impact energy caused by predicted falling rock layers. Based on the laboratory tests, numerical modeling and mathematical dynamic model of rock bolt support, the dependence of the drop height and the corresponding impact energy for the expanded room was determined.

Suggested Citation

  • Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass," Energies, MDPI, vol. 13(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2082-:d:348542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2019. "Flexibility and Load-Bearing Capacity of Roof Bolting as Functions of Mounting Depth and Hole Diameter," Energies, MDPI, vol. 12(19), pages 1-23, September.
    2. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    4. Krzysztof Skrzypkowski, 2019. "The Influence of Room and Pillar Method Geometry on the Deposit Utilization Rate and Rock Bolt Load," Energies, MDPI, vol. 12(24), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Skrzypkowski & Krzysztof Zagórski & Anna Zagórska & Fhatuwani Sengani, 2022. "Access to Deposits as a Stage of Mining Works," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Paulina Gackowiec & Marta Podobińska-Staniec & Edyta Brzychczy & Christopher Kühlbach & Toyga Özver, 2020. "Review of Key Performance Indicators for Process Monitoring in the Mining Industry," Energies, MDPI, vol. 13(19), pages 1-20, October.
    3. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    4. Krzysztof Lalik & Ireneusz Dominik & Paweł Gut & Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski, 2021. "Non-Destructive Acoustical Rock Bolt Testing System with Intelligent Filtering in Salt Mine ‘Wieliczka’," Energies, MDPI, vol. 14(17), pages 1-16, September.
    5. Artur Kozłowski & Łukasz Bołoz, 2021. "Design and Research on Power Systems and Algorithms for Controlling Electric Underground Mining Machines Powered by Batteries," Energies, MDPI, vol. 14(13), pages 1-21, July.
    6. Krzysztof Skrzypkowski, 2020. "Case Studies of Rock Bolt Support Loads and Rock Mass Monitoring for the Room and Pillar Method in the Legnica-Głogów Copper District in Poland," Energies, MDPI, vol. 13(11), pages 1-20, June.
    7. Krzysztof Skrzypkowski, 2020. "Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks," Energies, MDPI, vol. 13(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    2. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    3. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    4. Krzysztof Skrzypkowski, 2020. "Comparative Analysis of the Mining Cribs Models Filled with Gangue," Energies, MDPI, vol. 13(20), pages 1-18, October.
    5. Krzysztof Skrzypkowski, 2020. "Case Studies of Rock Bolt Support Loads and Rock Mass Monitoring for the Room and Pillar Method in the Legnica-Głogów Copper District in Poland," Energies, MDPI, vol. 13(11), pages 1-20, June.
    6. Yongkang Yang & Xuecong Xu & Chenlong Wang, 2023. "Study on the Mechanism of Surrounding Rock Deformation and Its Control for Roof Cutting Retained Gob-Side Entry in Close-Distance Coal Seams Co-Mining," Energies, MDPI, vol. 16(11), pages 1-17, May.
    7. Krzysztof Skrzypkowski, 2020. "Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks," Energies, MDPI, vol. 13(14), pages 1-20, July.
    8. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    9. Wadslin Frenelus & Hui Peng & Jingyu Zhang, 2022. "An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    10. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    11. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    12. Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
    13. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    14. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    15. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    16. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    17. Krzysztof Skrzypkowski, 2021. "Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the BackfillCAD Model," Energies, MDPI, vol. 14(11), pages 1-19, May.
    18. Jianhang Chen & Ziwei Ding & Saisai Wu & Junwen Zhang, 2022. "Studying the Bond Performance of Full-Grouting Rock Bolts Based on the Variable Controlling Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    19. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    20. Yuanyuan Pu & Derek B. Apel & Stanislaw Prusek & Andrzej Walentek & Tomasz Cichy, 2021. "Back-analysis for initial ground stress field at a diamond mine using machine learning approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 191-203, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2082-:d:348542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.