IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3754-d272492.html
   My bibliography  Save this article

Flexibility and Load-Bearing Capacity of Roof Bolting as Functions of Mounting Depth and Hole Diameter

Author

Listed:
  • Krzysztof Skrzypkowski

    (AGH University of Science and Technology, Faculty of Mining and Geoengineering, Mickiewicza 30 av. 30-059 Cracow, Poland)

  • Waldemar Korzeniowski

    (AGH University of Science and Technology, Faculty of Mining and Geoengineering, Mickiewicza 30 av. 30-059 Cracow, Poland)

  • Krzysztof Zagórski

    (AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 av. 30-059 Cracow, Poland)

  • Anna Zagórska

    (Polish Academy of Sciences, Institute of Geological Sciences, Research Centre in Cracow, Senacka 1, 31-002 Cracow, Poland)

Abstract

This paper presents the results of laboratory tensile testing of segmentally-installed glue-in roof bolting. We studied roof bolting of the type Olkusz-16A (Boltech Sp. z o.o., ZGH Bolesław S.A., Bukowno, Poland), additionally equipped with a steel rod coil, which was mounted in steel cylinders filled with a concrete mixture using multi-part resin cartridges with a diameter of 0.024 m and length of 0.045 m. The mounting depths were 0.1 m and 0.2 m, respectively. Our main purpose was to determine the effect of the bolt hole diameter, which assumed the values 0.028 m, 0.032 m, 0.035 m, and 0.037 m, respectively, on the load-bearing capacity of the roof bolting in relation to the mounting depth. We found that the mounting depth of 0.2 m was sufficient for the roof bolting to exhibit its full load and displacement properties for all four diameters of the bolt hole. To determine whether the roof bolting was capable of transferring the load in situ, we presented the results of the predicted load on the roof bolting applied in a room and pillar mining method in an underground mine of zinc and lead ore deposits. Our objective was to determine the influence of the room and pillar mining method geometry on the range of the fault zone of rocks around pits. We designed the deposit excavation model using the Examine3D numerical modeling software, which is based on the boundary element method. We created three-dimensional models for three variants of working space opening widths: featuring two, three, and four rows of rooms. The geometry of rooms and pillars corresponded to the mine conditions; the width, height, and length parameters were all 5 m. We determined the strength, strain, and structural parameters of the rock mass on the basis of laboratory studies of the drill core and rock forms collected from the room longwall. We used the strength factor to specify the maximum range of the fault zone of rocks around pits. In the last stage of research, we compared the load value obtained based on numerical testing with the maximum load obtained in the tensile strength tests of the roof bolting and determined the safety factor of the segmentally-installed roof bolting.

Suggested Citation

  • Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2019. "Flexibility and Load-Bearing Capacity of Roof Bolting as Functions of Mounting Depth and Hole Diameter," Energies, MDPI, vol. 12(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3754-:d:272492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Zhou & Hao Yan & Shuyin Jiang & Qiang Sun & Shenyang Ouyang, 2019. "Stability Analysis of Surrounding Rock in Paste Backfill Recovery of Residual Room Pillars," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    2. Yuejin Zhou & Meng Li & Xiaoding Xu & Xiaotong Li & Yongdong Ma & Zhanguo Ma, 2018. "Research on Catastrophic Pillar Instability in Room and Pillar Gypsum Mining," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    2. Jianhang Chen & Ziwei Ding & Saisai Wu & Junwen Zhang, 2022. "Studying the Bond Performance of Full-Grouting Rock Bolts Based on the Variable Controlling Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    3. Krzysztof Skrzypkowski, 2019. "The Influence of Room and Pillar Method Geometry on the Deposit Utilization Rate and Rock Bolt Load," Energies, MDPI, vol. 12(24), pages 1-15, December.
    4. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    5. Krzysztof Lalik & Ireneusz Dominik & Paweł Gut & Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski, 2021. "Non-Destructive Acoustical Rock Bolt Testing System with Intelligent Filtering in Salt Mine ‘Wieliczka’," Energies, MDPI, vol. 14(17), pages 1-16, September.
    6. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Adjustment of the Yielding System of Mechanical Rock Bolts for Room and Pillar Mining Method in Stratified Rock Mass," Energies, MDPI, vol. 13(8), pages 1-23, April.
    7. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    8. Yongkang Yang & Xuecong Xu & Chenlong Wang, 2023. "Study on the Mechanism of Surrounding Rock Deformation and Its Control for Roof Cutting Retained Gob-Side Entry in Close-Distance Coal Seams Co-Mining," Energies, MDPI, vol. 16(11), pages 1-17, May.
    9. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    10. Krzysztof Skrzypkowski, 2020. "Decreasing Mining Losses for the Room and Pillar Method by Replacing the Inter-Room Pillars by the Construction of Wooden Cribs Filled with Waste Rocks," Energies, MDPI, vol. 13(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Skrzypkowski, 2021. "Determination of the Backfilling Time for the Zinc and Lead Ore Deposits with Application of the BackfillCAD Model," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Wenda Wu & Guorui Feng & Xiuxiu Yu & Jianbiao Bai & Xiangyu Wang & Xiangzhuo Zhao, 2023. "Investigation into Pressure Appearances and Hydraulic Fracturing Roof-Cutting Technology in Mining Working Face under Residual Pillars: A Case Study," Energies, MDPI, vol. 16(9), pages 1-17, May.
    3. Nan Zhou & Hao Yan & Shuyin Jiang & Qiang Sun & Shenyang Ouyang, 2019. "Stability Analysis of Surrounding Rock in Paste Backfill Recovery of Residual Room Pillars," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    4. Yongxiang Ge & Congrui Zhang & Gaofeng Ren & Luwei Zhang, 2022. "Experimental Investigation of the Mechanical Behavior and Damage Evolution Mechanism of Oil-Impregnated Gypsum Rock," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    5. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3754-:d:272492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.