IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p391-d201038.html
   My bibliography  Save this article

A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining

Author

Listed:
  • Xiaojie Yang

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Eryu Wang

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Xingen Ma

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Guofeng Zhang

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Ruifeng Huang

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Haopeng Lou

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Civil and Architecture Engineering, China University of Mining and Technology, Beijing 100083, China)

Abstract

In order to reduce large deformation failure occurrences in non-pillar longwall mining entries due to roof weighting behaviors, a case study in Halagou coal mine was conducted on optimization and control techniques for entry stability in non-pillar longwall mining. The Universal Discrete Element Code (UDEC) modeling was adopted to study entry stability in non-pillar mining, and the characteristics of deformation and stress and crack propagation were revealed. The large deformation transmission between the entry-immediate roof and the gob-immediate roof could be eliminated by optimizing the entry roof structure through a directional roof-cutting method. The localized tensile stresses generated in the entry-surrounding rock caused the generation of coalescent macroscopic fractures, which resulted in the instability of the entry. The tensile stress state could be inhibited by an active flexible support system through enhancing the confining pressure on the surrounding rock. Serious rotation subsidence occurs in the entry roof due to periodic weighting of the main roof, which could be greatly reduced by a passive rigid support pattern. The numerical and field test results both showed that the roof weighting pressure was offloaded by the technique and that the deformation of the entry surrounding the rock in non-pillar mining was quite small. Thus, the technique can effectively ensure the stability of the gob-side entry, which can provide references for entry stability control in non-pillar longwall mining.

Suggested Citation

  • Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:391-:d:201038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    2. Xiaojie Yang & Eryu Wang & Yajun Wang & Yubing Gao & Pu Wang, 2018. "A Study of the Large Deformation Mechanism and Control Techniques for Deep Soft Rock Roadways," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eryu Wang & Guangbo Chen & Xiaojie Yang & Guofeng Zhang & Wenbin Guo, 2020. "Study on the Failure Mechanism for Coal Roadway Stability in Jointed Rock Mass Due to the Excavation Unloading Effect," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    2. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    3. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    4. Hai Wu & Qian Jia & Weijun Wang & Nong Zhang & Yiming Zhao, 2021. "Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    5. Eryu Wang & Guangbo Chen & Xiaojie Yang & Guofeng Zhang & Wenbin Guo, 2020. "Study on the Failure Mechanism for Coal Roadway Stability in Jointed Rock Mass Due to the Excavation Unloading Effect," Energies, MDPI, vol. 13(10), pages 1-19, May.
    6. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    7. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    8. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    9. Jun Yang & Hongyu Wang & Yajun Wang & Binhui Liu & Shilin Hou & Yu Cheng, 2019. "Stability Analysis of the Entry in a New Mining Approach Influenced by Roof Fracture Position," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    10. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    11. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    13. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
    14. Sari Melati & Ridho Kresna Wattimena & David Prambudi Sahara & Syafrizal & Ganda Marihot Simangunsong & Wahyu Hidayat & Erwin Riyanto & Raden Roro Shinta Felisia, 2022. "Block Caving Mining Method: Transformation and Its Potency in Indonesia," Energies, MDPI, vol. 16(1), pages 1-36, December.
    15. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    16. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    17. Qingxian Huang & Xufeng Wang & Xuyang Chen & Dongdong Qin & Zechao Chang, 2020. "Evolution of Interior and Exterior Bearing Structures of the Deep-Soft-Rock Roadway: From Theory to Field Test in the Pingdingshan Mining Area," Energies, MDPI, vol. 13(17), pages 1-19, August.
    18. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    19. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    20. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:391-:d:201038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.