IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5303-d1191466.html
   My bibliography  Save this article

Effect of Regenerative Braking on Battery Life

Author

Listed:
  • Ramesh Kumar Chidambaram

    (Automotive Research Centre, Vellore Institute of Technology, Vellore 632014, India)

  • Dipankar Chatterjee

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Barnali Barman

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Partha Pratim Das

    (School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Dawid Taler

    (Department of Thermal Processes, Air Protection and Waste Management, Cracow University of Technology, 31-155 Cracow, Poland)

  • Jan Taler

    (Department of Energy, Cracow University of Technology, 31-864 Cracow, Poland)

  • Tomasz Sobota

    (Department of Thermal Processes, Air Protection and Waste Management, Cracow University of Technology, 31-155 Cracow, Poland)

Abstract

It is a well-known fact that automotive industries in every country are shifting towards electric vehicles (EVs) and in the days to come it is expected that the industry will become dominated by them, along with hybrid electric vehicles (HEVs). Unfortunately, the acceptance of EVs for mobility is affected by its poor range per charge. Thus, energy optimization and waste energy recuperation are currently in need. A promising method to recover energy that is lost during vehicle deceleration is regenerative braking, which extends the range of a vehicle by recovering the kinetic energy from braking and using it to recharge the battery. However, the intensity of the charging–discharging rate and the operating temperature of lithium–ion (Li–ion) batteries make them vulnerable to failure, making the rate of current delivered to the battery by regenerative braking a serious concern. Therefore, the focus of this review article is on how regenerative braking affects battery life and the precautions being taken to safeguard the battery against increased charge during regenerative braking. In this review paper, various research articles are referred to in order to examine how regenerative braking affects battery life. It is concluded that charging current obtained from long-term regenerative braking is the prominent factor in battery deterioration, regardless of the current intensity. Additionally, the rate of lithium plating is increased if the temperature and state of charge (SOC) are outside of the ideal range. By lowering the depth of discharge (DOD) and using shorter recharging times, higher levels of regenerative braking will extend a battery’s lifecycle even at high SOC and temperature.

Suggested Citation

  • Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5303-:d:1191466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anselma, Pier Giuseppe & Kollmeyer, Phillip & Lempert, Jeremy & Zhao, Ziyu & Belingardi, Giovanni & Emadi, Ali, 2021. "Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation," Applied Energy, Elsevier, vol. 285(C).
    2. Li, Liang & Wang, Xiangyu & Xiong, Rui & He, Kai & Li, Xujian, 2016. "AMT downshifting strategy design of HEV during regenerative braking process for energy conservation," Applied Energy, Elsevier, vol. 183(C), pages 914-925.
    3. Bo Long & Shin Teak Lim & Zhi Feng Bai & Ji Hyoung Ryu & Kil To Chong, 2014. "Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation," Energies, MDPI, vol. 7(7), pages 1-16, July.
    4. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    5. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    6. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    7. Qiu, Chengqun & Wang, Guolin & Meng, Mingyu & Shen, Yujie, 2018. "A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations," Energy, Elsevier, vol. 149(C), pages 329-340.
    8. Wu, Jian & Wang, Xiangyu & Li, Liang & Qin, Cun'an & Du, Yongchang, 2018. "Hierarchical control strategy with battery aging consideration for hybrid electric vehicle regenerative braking control," Energy, Elsevier, vol. 145(C), pages 301-312.
    9. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    10. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Qi, Lingfei & Wu, Xiaoping & Zeng, Xiaohui & Feng, Yan & Pan, Hongye & Zhang, Zutao & Yuan, Yanping, 2020. "An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles," Energy, Elsevier, vol. 200(C).
    3. Li, Hao & Fu, Lijun & Long, Xinlin & Liu, Lang & Zeng, Ziqing, 2024. "A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention," Energy, Elsevier, vol. 294(C).
    4. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    5. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    6. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    7. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    9. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    10. Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
    11. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    12. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
    13. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    14. Hanwu Liu & Yulong Lei & Yao Fu & Xingzhong Li, 2020. "An Optimal Slip Ratio-Based Revised Regenerative Braking Control Strategy of Range-Extended Electric Vehicle," Energies, MDPI, vol. 13(6), pages 1-21, March.
    15. Yang Yang & Yundong He & Zhong Yang & Chunyun Fu & Zhipeng Cong, 2020. "Torque Coordination Control of an Electro-Hydraulic Composite Brake System During Mode Switching Based on Braking Intention," Energies, MDPI, vol. 13(8), pages 1-19, April.
    16. Shida Jiang & Zhengxiang Song, 2021. "Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance," Energies, MDPI, vol. 14(16), pages 1-20, August.
    17. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    18. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    19. Sierra, G. & Orchard, M. & Goebel, K. & Kulkarni, C., 2019. "Battery health management for small-size rotary-wing electric unmanned aerial vehicles: An efficient approach for constrained computing platforms," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 166-178.
    20. Quan Sun & Hong Zhang & Jianrong Zhang & Wentao Ma, 2018. "Adaptive Unscented Kalman Filter with Correntropy Loss for Robust State of Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5303-:d:1191466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.