IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1898-d345022.html
   My bibliography  Save this article

MILP-PSO Combined Optimization Algorithm for an Islanded Microgrid Scheduling with Detailed Battery ESS Efficiency Model and Policy Considerations

Author

Listed:
  • Rae-Kyun Kim

    (Encored Technologies, Seoul 06109, Korea)

  • Mark B. Glick

    (Hawaii Natural Energy Institute, Honolulu, HI 96822, USA)

  • Keith R. Olson

    (Natural Energy Laboratory of Hawaii Authority, Kailua, HI 96740, USA)

  • Yun-Su Kim

    (School of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea)

Abstract

This paper presents the optimal scheduling of a diesel generator and an energy storage system (ESS) while using a detailed battery ESS energy efficiency model. Optimal scheduling has been hampered to date by the nonlinearity and complexity of the battery ESS. This is due to the battery ESS efficiency being a multiplication of inverter and battery efficiency and the dependency of an inverter and any associated battery efficiencies on load and charging and discharging. We propose a combined mixed-integer linear programming and particle swarm optimization (MILP-PSO) algorithm as a novel means of addressing these considerations. In the algorithm, MILP is used to find some initial points of PSO, so that it can find better solution. Moreover, some additional algorithms are added into PSO to modify and, hence, improve its ability of dealing with constraint conditions and the local minimum problem. The simulation results show that the proposed algorithm performs better than MILP and PSO alone for the practical microgrid. The results also indicated that simplification or neglect of ESS efficiency when applying MILP to scheduling may cause a constraint violation.

Suggested Citation

  • Rae-Kyun Kim & Mark B. Glick & Keith R. Olson & Yun-Su Kim, 2020. "MILP-PSO Combined Optimization Algorithm for an Islanded Microgrid Scheduling with Detailed Battery ESS Efficiency Model and Policy Considerations," Energies, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1898-:d:345022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto S. Faranda & Hossein Hafezi & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "The Optimum PV Plant for a Given Solar DC/AC Converter," Energies, MDPI, vol. 8(6), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanderlei Aparecido Silva & Alexandre Rasi Aoki & Germano Lambert-Torres, 2020. "Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System," Energies, MDPI, vol. 13(19), pages 1-28, October.
    2. Yong-Rae Lee & Hyung-Joon Kim & Mun-Kyeom Kim, 2021. "Optimal Operation Scheduling Considering Cycle Aging of Battery Energy Storage Systems on Stochastic Unit Commitments in Microgrids," Energies, MDPI, vol. 14(2), pages 1-21, January.
    3. Woan-Ho Park & Hamza Abunima & Mark B. Glick & Yun-Su Kim, 2021. "Energy Curtailment Scheduling MILP Formulation for an Islanded Microgrid with High Penetration of Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-15, September.
    4. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    5. Joo Won Lee & Emily Craparo & Giovanna Oriti & Arthur Krener, 2022. "Optimizing Fuel Efficiency on an Islanded Microgrid under Varying Loads," Energies, MDPI, vol. 15(21), pages 1-21, October.
    6. Andrés Rengel & Alexander Aguila Téllez & Leony Ortiz & Milton Ruiz, 2023. "Optimal Insertion of Energy Storage Systems Considering the Economic Dispatch and the Minimization of Energy Not Supplied," Energies, MDPI, vol. 16(6), pages 1-26, March.
    7. Yujiang Ye & Ruifeng Shi & Yuqin Gao & Xiaolei Ma & Di Wang, 2023. "Two-Stage Optimal Scheduling of Highway Self-Consistent Energy System in Western China," Energies, MDPI, vol. 16(5), pages 1-18, March.
    8. Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
    9. David Domínguez-Barbero & Javier García-González & Miguel A. Sanz-Bobi & Eugenio F. Sánchez-Úbeda, 2020. "Optimising a Microgrid System by Deep Reinforcement Learning Techniques," Energies, MDPI, vol. 13(11), pages 1-18, June.
    10. Grzegorz Maślak & Przemysław Orłowski, 2022. "Microgrid Operation Optimization Using Hybrid System Modeling and Switched Model Predictive Control," Energies, MDPI, vol. 15(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Yilmaz, Saban & Dincer, Furkan, 2017. "Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 15-23.
    3. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Balfour, John & Hill, Roger & Walker, Andy & Robinson, Gerald & Gunda, Thushara & Desai, Jal, 2021. "Masking of photovoltaic system performance problems by inverter clipping and other design and operational practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Silvestro Cossu & Roberto Baccoli & Emilio Ghiani, 2021. "Utility Scale Ground Mounted Photovoltaic Plants with Gable Structure and Inverter Oversizing for Land-Use Optimization," Energies, MDPI, vol. 14(11), pages 1-16, May.
    6. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    7. Good, Jeremy & Johnson, Jeremiah X., 2016. "Impact of inverter loading ratio on solar photovoltaic system performance," Applied Energy, Elsevier, vol. 177(C), pages 475-486.
    8. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Antonio Ocana-Miguel & Jose R. Andres-Diaz & Enrique Navarrete-de Galvez & Alfonso Gago-Calderon, 2021. "Adaptation of an Insulated Centralized Photovoltaic Outdoor Lighting Installation with Electronic Control System to Improve Service Guarantee in Tropical Latitudes," Sustainability, MDPI, vol. 13(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1898-:d:345022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.