IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p833-d732049.html
   My bibliography  Save this article

Microgrid Operation Optimization Using Hybrid System Modeling and Switched Model Predictive Control

Author

Listed:
  • Grzegorz Maślak

    (Department of Automatic Control and Robotics, Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland)

  • Przemysław Orłowski

    (Department of Automatic Control and Robotics, Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland)

Abstract

Optimization of economic aspects of microgrid operation in both grid-connected and islanded mode leads to contradictive definitions of optimality for both modes. There is no general agreement on how to cope with this duality. To address this issue, as well as modern energy market requirements and a better renewable energy utilization necessity in the case of large facilities, a comprehensive control solution utilizing the appropriate model is needed. In response, the authors propose a hybrid microgrid model covering fundamental features and designed to work in conjunction with two switched receding horizon control laws. A relevant controller is chosen according to the current microgrid operation mode and its cost function tailored to specific demands of the islanded or grid-connected operation. Performed research led to a new switched hybrid model predictive control approach focused on microgrid economic optimization. This approach utilizes an appropriate hybrid microgrid model also contributed by the authors. The introduced solution turned out to be effective in overall energy cost reduction in the case of large commercial facilities, regardless of grid-connection and renewable generation scenarios. Furthermore, it also provides satisfactory renewable energy and storage capabilities utilization in changing grid connection conditions.

Suggested Citation

  • Grzegorz Maślak & Przemysław Orłowski, 2022. "Microgrid Operation Optimization Using Hybrid System Modeling and Switched Model Predictive Control," Energies, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:833-:d:732049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
    2. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    3. Lin Wang & Anke Xue, 2021. "Equivalent Modeling of Microgrids Based on Optimized Broad Learning System," Energies, MDPI, vol. 14(23), pages 1-11, November.
    4. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    5. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    6. Rae-Kyun Kim & Mark B. Glick & Keith R. Olson & Yun-Su Kim, 2020. "MILP-PSO Combined Optimization Algorithm for an Islanded Microgrid Scheduling with Detailed Battery ESS Efficiency Model and Policy Considerations," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    2. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    3. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    5. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    6. Woan-Ho Park & Hamza Abunima & Mark B. Glick & Yun-Su Kim, 2021. "Energy Curtailment Scheduling MILP Formulation for an Islanded Microgrid with High Penetration of Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-15, September.
    7. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    8. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    9. Zhang, Y.Q. & Chen, J.J. & Wang, Y.X. & Feng, L., 2024. "Enhancing resilience of agricultural microgrid through electricity–heat–water based multi-energy hub considering irradiation intensity uncertainty," Renewable Energy, Elsevier, vol. 220(C).
    10. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    11. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    12. Adetunji, Kayode E. & Hofsajer, Ivan W. & Abu-Mahfouz, Adnan M. & Cheng, Ling, 2022. "An optimization planning framework for allocating multiple distributed energy resources and electric vehicle charging stations in distribution networks," Applied Energy, Elsevier, vol. 322(C).
    13. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    14. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).
    15. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    16. Muhammad Nauman & Wajiha Shireen & Amir Hussain, 2022. "Model-Free Predictive Control and Its Applications," Energies, MDPI, vol. 15(14), pages 1-24, July.
    17. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    18. Yong-Rae Lee & Hyung-Joon Kim & Mun-Kyeom Kim, 2021. "Optimal Operation Scheduling Considering Cycle Aging of Battery Energy Storage Systems on Stochastic Unit Commitments in Microgrids," Energies, MDPI, vol. 14(2), pages 1-21, January.
    19. Luo, Zhiqiang & Liu, Hui & Wang, Ni & Zhao, Teyang & Tian, Jiarui, 2024. "Optimal adaptive decentralized under-frequency load shedding for islanded smart distribution network considering wind power uncertainty," Applied Energy, Elsevier, vol. 365(C).
    20. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:833-:d:732049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.