IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2830-d366492.html
   My bibliography  Save this article

Optimising a Microgrid System by Deep Reinforcement Learning Techniques

Author

Listed:
  • David Domínguez-Barbero

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Javier García-González

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Miguel A. Sanz-Bobi

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

  • Eugenio F. Sánchez-Úbeda

    (Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015 Madrid, Spain)

Abstract

The deployment of microgrids could be fostered by control systems that do not require very complex modelling, calibration, prediction and/or optimisation processes. This paper explores the application of Reinforcement Learning (RL) techniques for the operation of a microgrid. The implemented Deep Q-Network (DQN) can learn an optimal policy for the operation of the elements of an isolated microgrid, based on the interaction agent-environment when particular operation actions are taken in the microgrid components. In order to facilitate the scaling-up of this solution, the algorithm relies exclusively on historical data from past events, and therefore it does not require forecasts of the demand or the renewable generation. The objective is to minimise the cost of operating the microgrid, including the penalty of non-served power. This paper analyses the effect of considering different definitions for the state of the system by expanding the set of variables that define it. The obtained results are very satisfactory as it can be concluded by their comparison with the perfect-information optimal operation computed with a traditional optimisation model, and with a Naive model.

Suggested Citation

  • David Domínguez-Barbero & Javier García-González & Miguel A. Sanz-Bobi & Eugenio F. Sánchez-Úbeda, 2020. "Optimising a Microgrid System by Deep Reinforcement Learning Techniques," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2830-:d:366492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    2. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    4. Brida V. Mbuwir & Frederik Ruelens & Fred Spiessens & Geert Deconinck, 2017. "Battery Energy Management in a Microgrid Using Batch Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-19, November.
    5. Rae-Kyun Kim & Mark B. Glick & Keith R. Olson & Yun-Su Kim, 2020. "MILP-PSO Combined Optimization Algorithm for an Islanded Microgrid Scheduling with Detailed Battery ESS Efficiency Model and Policy Considerations," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    2. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    2. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    4. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    5. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    6. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    7. Yujian Ye & Dawei Qiu & Huiyu Wang & Yi Tang & Goran Strbac, 2021. "Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning," Energies, MDPI, vol. 14(3), pages 1-22, January.
    8. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    9. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    10. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    11. Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    12. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    13. Grace Muriithi & Sunetra Chowdhury, 2021. "Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach," Energies, MDPI, vol. 14(9), pages 1-24, May.
    14. Khawaja Haider Ali & Mohammad Abusara & Asif Ali Tahir & Saptarshi Das, 2023. "Dual-Layer Q-Learning Strategy for Energy Management of Battery Storage in Grid-Connected Microgrids," Energies, MDPI, vol. 16(3), pages 1-17, January.
    15. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    16. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    17. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    18. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    20. Ahmed Ismail & Mustafa Baysal, 2023. "Dynamic Pricing Based on Demand Response Using Actor–Critic Agent Reinforcement Learning," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2830-:d:366492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.