IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1792-d342757.html
   My bibliography  Save this article

Genetic Analysis of Geothermal Resources and Geothermal Geological Characteristics in Datong Basin, Northern China

Author

Listed:
  • Wenlong Zhou

    (Institute of Geophysics and Geomatics, Hubei Subsurface Multi-scale Imaging Key Lab, China University of Geosciences, Wuhan 430074, China)

  • Xiangyun Hu

    (Institute of Geophysics and Geomatics, Hubei Subsurface Multi-scale Imaging Key Lab, China University of Geosciences, Wuhan 430074, China)

  • Shilong Yan

    (Shanxi Geological Engineering Exploration Institute, Taiyuan 030200, China)

  • Hongdang Guo

    (Shanxi Geological Engineering Exploration Institute, Taiyuan 030200, China)

  • Wei Chen

    (Institute of Geophysics and Geomatics, Hubei Subsurface Multi-scale Imaging Key Lab, China University of Geosciences, Wuhan 430074, China)

  • Sijing Liu

    (Institute of Geophysics and Geomatics, Hubei Subsurface Multi-scale Imaging Key Lab, China University of Geosciences, Wuhan 430074, China)

  • Chunyan Miao

    (Shanxi Geological Engineering Exploration Institute, Taiyuan 030200, China)

Abstract

Datong Basin is a Cenozoic fault basin located in the central part of the North China Block with strong tectonic activity. The unique geological environment of Datong Basin is believed to have good conditions for the formation of geothermal resources. Based on the research of the classification, genesis and geothermal geological characteristics of geothermal resources, the geological conditions, seismic activity, volcanic activity, geophysical exploration results, terrestrial heat flow and hot springs in Datong Basin are analyzed. The possibility of the occurrence of geothermal resources in Datong Basin is determined, and the genesis and occurrence mechanisms of geothermal resources in Datong Basin are judged. The results show that Datong Basin satisfies the geological geothermal conditions of the formation of geothermal resources and is of great research value. The formation of geothermal resources in the Datong Basin is affected by the uplift of the Qinghai–Tibet Plateau and the destruction of the North China Craton. The geothermal resources in Datong Basin are formed by the combination of modern volcanic activity and strong inner-plate tectonic activities. The geothermal system is a combination of convective hydrothermal systems and partial melt systems. At the same time, it is concluded that the key research areas for the occurrence of geothermal resources are mainly in the northeastern part of the basin. It is recommended to carry out detailed and comprehensive exploration of the northeastern part of Datong Basin.

Suggested Citation

  • Wenlong Zhou & Xiangyun Hu & Shilong Yan & Hongdang Guo & Wei Chen & Sijing Liu & Chunyan Miao, 2020. "Genetic Analysis of Geothermal Resources and Geothermal Geological Characteristics in Datong Basin, Northern China," Energies, MDPI, vol. 13(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1792-:d:342757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    2. Catherine A. Rychert & Karen M. Fischer & Stéphane Rondenay, 2005. "A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America," Nature, Nature, vol. 436(7050), pages 542-545, July.
    3. Chaofeng Wu & Xiangyun Hu & Guiling Wang & Yufei Xi & Wenjing Lin & Shuang Liu & Bo Yang & Jianchao Cai, 2018. "Magnetotelluric Imaging of the Zhangzhou Basin Geothermal Zone, Southeastern China," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongzhu Xiong & Mingyong Zhu & Yongyi Li & Kekun Huang & Yankui Chen & Jingqing Liao, 2022. "Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning," Energies, MDPI, vol. 15(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    3. Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).
    4. Wentao Zhao & Yilong Yuan & Tieya Jing & Chenghao Zhong & Shoucheng Wei & Yulong Yin & Deyuan Zhao & Haowei Yuan & Jin Zheng & Shaomin Wang, 2023. "Heat Production Performance from an Enhanced Geothermal System (EGS) Using CO 2 as the Working Fluid," Energies, MDPI, vol. 16(20), pages 1-16, October.
    5. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    7. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    8. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    9. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    10. Liao, Jianxing & Hu, Ke & Mehmood, Faisal & Xu, Bin & Teng, Yuhang & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework," Energy, Elsevier, vol. 285(C).
    11. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    12. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    13. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    14. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    15. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    16. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    18. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    19. Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
    20. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1792-:d:342757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.