IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1749-d341903.html
   My bibliography  Save this article

Theoretical Hydrokinetic Power Potential Assessment of the U-Tapao River Basin Using GIS

Author

Listed:
  • Fida Ali

    (Department of Sustainable Energy Management, Faculty of Environment Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Chatchawin Srisuwan

    (Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Kuaanan Techato

    (Environmental Assessment and Technology for Hazardous Waste Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Adul Bennui

    (Southern Regional Center of Geo-Informatics and Space Technology, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand)

  • Tanita Suepa

    (Geo-Informatics and Space Technology Development Agency (GISTDA), Bangkok 10210, Thailand)

  • Damrongrit Niammuad

    (Geo-Informatics and Space Technology Development Agency (GISTDA), Bangkok 10210, Thailand)

Abstract

Conventional hydropower technologies such as dams have been criticized due to their negative environmental effects which have necessitated the development of new technologies for sustainable development of hydropower energy. Hydrokinetic (HK) energy is one such emerging renewable energy technology and, in this study, a theoretical potential assessment was done using a Geographic Information System (GIS) and Soil and Water Assessment Tool (SWAT) hydrological model, for the U-Tapao river basin (URB), a major tributary of the Songkhla lake basin (SLB) in southern Thailand. The SWAT was calibrated and validated with SWAT calibration and uncertainty (SWAT-CUP)-SUFI 2 programs using the observed discharge data from the gauging stations within the watershed. The model performance was evaluated based on the Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R 2 ) values, achieving 0.62 and 0.60, respectively, for calibration, and 0.65 and 0.68 for validation which is considered acceptable and can be used to represent flow estimation. The theoretical HK potential was estimated to be 71.9 MW along the 77.18 km U-Tapao river, which could be developed as a renewable and reliable energy source for the communities living around the river. The method developed could also be applied to river systems around the world for resource and time efficient HK potential assessments.

Suggested Citation

  • Fida Ali & Chatchawin Srisuwan & Kuaanan Techato & Adul Bennui & Tanita Suepa & Damrongrit Niammuad, 2020. "Theoretical Hydrokinetic Power Potential Assessment of the U-Tapao River Basin Using GIS," Energies, MDPI, vol. 13(7), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1749-:d:341903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    2. Punys, P. & Adamonyte, I. & Kvaraciejus, A. & Martinaitis, E. & Vyciene, G. & Kasiulis, E., 2015. "Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 643-652.
    3. Yan Yang & Guoqiang Wang & Lijing Wang & Jingshan Yu & Zongxue Xu, 2014. "Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    4. Kosnik, Lea, 2008. "The potential of water power in the fight against global warming in the US," Energy Policy, Elsevier, vol. 36(9), pages 3252-3265, September.
    5. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    6. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fida Ali & Adul Bennui & Shahariar Chowdhury & Kuaanan Techato, 2022. "Suitable Site Selection for Solar-Based Green Hydrogen in Southern Thailand Using GIS-MCDM Approach," Sustainability, MDPI, vol. 14(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridgill, Michael & Neill, Simon P. & Lewis, Matt J. & Robins, Peter E. & Patil, Sopan D., 2021. "Global riverine theoretical hydrokinetic resource assessment," Renewable Energy, Elsevier, vol. 174(C), pages 654-665.
    2. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    3. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    5. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    6. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    7. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    9. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    10. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    11. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    12. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    13. Huixiang Chen & Daqing Zhou & Yuan Zheng & Shengwen Jiang & An Yu & You Guo, 2018. "Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades," Energies, MDPI, vol. 11(12), pages 1-18, November.
    14. Manish Goyal & Vishal Singh & Akshay Meena, 2015. "Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2875-2894, June.
    15. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
    16. Mansoor Ahmed Zaib & Arbaz Waqar & Shoukat Abbas & Saeed Badshah & Sajjad Ahmad & Muhammad Amjad & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine," Energies, MDPI, vol. 15(15), pages 1-13, July.
    17. Dhakal, Sagar & Timilsina, Ashesh B. & Dhakal, Rabin & Fuyal, Dinesh & Bajracharya, Tri R. & Pandit, Hari P. & Amatya, Nagendra & Nakarmi, Amrit M., 2015. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 662-669.
    18. Fanzhang Zeng & Sifan Jin & Lei Ye & Xuezhi Gu & Jun Guo, 2023. "Analysis of flood conveyance capacity of small- and medium-sized river and flood managements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 447-467, March.
    19. Ninad Bhagwat & Xiaobing Zhou, 2023. "Locating Potential Run-of-River Hydropower Sites by Developing Novel Parsimonious Multi-Dimensional Moving Window (PMMW) Algorithm with Digital Elevation Models," Energies, MDPI, vol. 16(19), pages 1-20, September.
    20. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1749-:d:341903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.