IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3354-d186856.html
   My bibliography  Save this article

Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades

Author

Listed:
  • Huixiang Chen

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Daqing Zhou

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Yuan Zheng

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Shengwen Jiang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • An Yu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • You Guo

    (Shanghai Investigation, Design & Research Institute Corporation Limited, Shanghai 200434, China)

Abstract

To obtain the flow mechanism of the transient characteristics of a Kaplan turbine, a three-dimensional (3-D) unsteady, incompressible flow simulation during load rejection was conducted using a computational fluid dynamics (CFD) method in this paper. The dynamic mesh and re-meshing methods were performed to simulate the closing process of the guide vanes and runner blades. The evolution of inner flow patterns and varying regularities of some parameters, such as the runner rotation speed, unit flow rate, unit torque, axial force, and static pressure of the monitored points were revealed, and the results were consistent with the experimental data. During the load rejection process, the guide vane closing behavior played a decisive role in changing the external characteristics and inner flow configurations. In this paper, the runner blades underwent a linear needle closure law and guide vanes operated according to a stage-closing law of “first fast, then slow,” where the inflection point was t = 2.3 s. At the segment point of the guide vane closing curve, a water hammer occurs between guide vanes and a large quantity of vortices emerged in the runner and the draft tube. The pressure at the measurement points changes dramatically and the axial thrust rises sharply, marking a unique time in the transient process. Thus, the quality of a transient process could be effectively improved by properly setting the location of segmented point. This study conducted a dynamic simulation of co-adjustment of the guide vanes and the blades, and the results could be used in fault diagnosis of transient operations at hydropower plants.

Suggested Citation

  • Huixiang Chen & Daqing Zhou & Yuan Zheng & Shengwen Jiang & An Yu & You Guo, 2018. "Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades," Energies, MDPI, vol. 11(12), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3354-:d:186856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    2. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    3. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    4. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    5. Giorgio Pavesi & Giovanna Cavazzini & Guido Ardizzon, 2016. "Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine during a Pumping Power Reduction Scenario," Energies, MDPI, vol. 9(7), pages 1-15, July.
    6. Daqing Zhou & Huixiang Chen & Languo Zhang, 2018. "Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model," Energies, MDPI, vol. 11(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan, Kan & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Binama, Maxime & Dai, Jing, 2021. "Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model," Renewable Energy, Elsevier, vol. 164(C), pages 109-121.
    2. Grzegorz Peczkis & Piotr Wiśniewski & Andriy Zahorulko, 2021. "Experimental and Numerical Studies on the Influence of Blade Number in a Small Water Turbine," Energies, MDPI, vol. 14(9), pages 1-15, May.
    3. Kan, Kan & Zheng, Yuan & Chen, Huixiang & Zhou, Daqing & Dai, Jing & Binama, Maxime & Yu, An, 2020. "Numerical simulation of transient flow in a shaft extension tubular pump unit during runaway process caused by power failure," Renewable Energy, Elsevier, vol. 154(C), pages 1153-1164.
    4. Binaya Baidar & Jonathan Nicolle & Bhupendra K. Gandhi & Michel J. Cervantes, 2020. "Numerical Study of the Winter–Kennedy Flow Measurement Method in Transient Flows," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Chen, Huixiang & Zhou, Daqing & Kan, Kan & Guo, Junxun & Zheng, Yuan & Binama, Maxime & Xu, Zhe & Feng, Jiangang, 2021. "Transient characteristics during the co-closing guide vanes and runner blades of a bulb turbine in load rejection process," Renewable Energy, Elsevier, vol. 165(P2), pages 28-41.
    6. Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
    7. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    8. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    9. Ke Liu & Feng Yang & Zhiyan Yang & Yunxian Zhu & Yongguang Cheng, 2019. "Runner Lifting-Up during Load Rejection Transients of a Kaplan Turbine: Flow Mechanism and Solution," Energies, MDPI, vol. 12(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    2. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Parametric study on the sensitivity and influence of axial and radial clearance on the performance of a positive displacement hydraulic turbine," Energy, Elsevier, vol. 201(C).
    3. Alejandro Tapia Córdoba & Daniel Gutiérrez Reina & Pablo Millán Gata, 2019. "An Evolutionary Computational Approach for Designing Micro Hydro Power Plants," Energies, MDPI, vol. 12(5), pages 1-25, March.
    4. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    5. Tapia, A. & Millán, P. & Gómez-Estern, F., 2018. "Integer programming to optimize Micro-Hydro Power Plants for generic river profiles," Renewable Energy, Elsevier, vol. 126(C), pages 905-914.
    6. Chen, Huixiang & Zhou, Daqing & Kan, Kan & Guo, Junxun & Zheng, Yuan & Binama, Maxime & Xu, Zhe & Feng, Jiangang, 2021. "Transient characteristics during the co-closing guide vanes and runner blades of a bulb turbine in load rejection process," Renewable Energy, Elsevier, vol. 165(P2), pages 28-41.
    7. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    8. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    9. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    10. Sonawat, Arihant & Choi, Young-Seok & Kim, Kyung Min & Kim, Jin-Hyuk, 2020. "Leakage loss estimation and parametric study on the effect of twist in rotor shape for harnessing Pico hydropower," Renewable Energy, Elsevier, vol. 151(C), pages 1240-1249.
    11. Tapia, A. & R. del Nozal, A. & Reina, D.G. & Millán, P., 2021. "Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms," Applied Energy, Elsevier, vol. 301(C).
    12. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    13. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Kan, Kan & Zheng, Yuan & Chen, Huixiang & Zhou, Daqing & Dai, Jing & Binama, Maxime & Yu, An, 2020. "Numerical simulation of transient flow in a shaft extension tubular pump unit during runaway process caused by power failure," Renewable Energy, Elsevier, vol. 154(C), pages 1153-1164.
    15. Chen, Huixiang & Zhou, Daqing & Kan, Kan & Xu, Hui & Zheng, Yuan & Binama, Maxime & Xu, Zhe & Feng, Jiangang, 2021. "Experimental investigation of a model bulb turbine under steady state and load rejection process," Renewable Energy, Elsevier, vol. 169(C), pages 254-265.
    16. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    17. Yao, Yao & Shen, Zhicheng & Wang, Qiliang & Du, Jiyun & Lu, Lin & Yang, Hongxing, 2023. "Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines," Applied Energy, Elsevier, vol. 329(C).
    18. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    19. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    20. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3354-:d:186856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.