IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i3p149-d258973.html
   My bibliography  Save this article

Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review

Author

Listed:
  • Ram Avtar

    (Faculty of Environment Earth Science, Hokkaido University, Sapporo 060-0810, Japan)

  • Netrananda Sahu

    (Department of Geography, Delhi School of Economics, University of Delhi, New Delhi 110007, India
    Disaster Prevention Research Institute, Kyoto University, Kyoto 611-0011, Japan)

  • Ashwani Kumar Aggarwal

    (Electrical and Instrumentation Engineering Department, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab -148106, India)

  • Shamik Chakraborty

    (Faculty of Sustainability Studies, Hosei University, 2-17-2 Fujimi Chiyoda-ku, Tokyo 102-8160, Japan)

  • Ali Kharrazi

    (Advanced Systems Analysis Group, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Ali P. Yunus

    (State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Jie Dou

    (Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan)

  • Tonni Agustiono Kurniawan

    (Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China)

Abstract

Renewable energy has received noteworthy attention during the last few decades. This is partly due to the fact that fossil fuels are depleting and the need for energy is soaring because of the growing population of the world. This paper attempts to provide an idea of what is being done by researchers in remote sensing and geographical information system (GIS) field for exploring the renewable energy resources in order to get to a more sustainable future. Several studies related to renewable energy resources viz. geothermal energy, wind energy, hydropower, biomass, and solar energy, have been considered in this paper. The focus of this review paper is on exploring how remote sensing and GIS-based techniques have been beneficial in exploring optimal locations for renewable energy resources. Several case studies from different parts of the world which use such techniques in exploring renewable energy resource sites of different kinds have also been included in this paper. Though each of the remote sensing and GIS techniques used for exploration of renewable energy resources seems to efficiently sell itself in being the most effective among others, it is important to keep in mind that in actuality, a combination of different techniques is more efficient for the task. Throughout the paper, many issues relating to the use of remote sensing and GIS for renewable energy are examined from both current and future perspectives and potential solutions are suggested. The authors believe that the conclusions and recommendations drawn from the case studies and the literature reviewed in the present study will be valuable to renewable energy scientists and policymakers.

Suggested Citation

  • Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:3:p:149-:d:258973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/3/149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/3/149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    2. Karthikeya, B.R. & Negi, Prabal S. & Srikanth, N., 2016. "Wind resource assessment for urban renewable energy application in Singapore," Renewable Energy, Elsevier, vol. 87(P1), pages 403-414.
    3. Millward-Hopkins, J.T. & Tomlin, A.S. & Ma, L. & Ingham, D.B. & Pourkashanian, M., 2013. "Assessing the potential of urban wind energy in a major UK city using an analytical model," Renewable Energy, Elsevier, vol. 60(C), pages 701-710.
    4. Ram Avtar & Saurabh Tripathi & Ashwani Kumar Aggarwal, 2019. "Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India," Land, MDPI, vol. 8(8), pages 1-19, August.
    5. Kilic, Gokhan & Unluturk, Mehmet S., 2015. "Testing of wind turbine towers using wireless sensor network and accelerometer," Renewable Energy, Elsevier, vol. 75(C), pages 318-325.
    6. Büyüközkan, Gülçin & Feyzioglu, Orhan & Nebol, Erdal, 2008. "Selection of the strategic alliance partner in logistics value chain," International Journal of Production Economics, Elsevier, vol. 113(1), pages 148-158, May.
    7. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    8. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    9. Shen, Ge & Xu, Bin & Jin, Yunxiang & Chen, Shi & Zhang, Wenbo & Guo, Jian & Liu, Hang & Zhang, Yujing & Yang, Xiuchun, 2017. "Monitoring wind farms occupying grasslands based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city, Gansu province, China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 128-136.
    10. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukač, Niko & Mongus, Domen & Žalik, Borut & Štumberger, Gorazd & Bizjak, Marko, 2024. "Novel GPU-accelerated high-resolution solar potential estimation in urban areas by using a modified diffuse irradiance model," Applied Energy, Elsevier, vol. 353(PA).
    2. Noe Aguilar Rivera, 2022. "Sustainable Biofuels. Strategy for Growth and Energy Security," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(3), pages 1-29, Julio - S.
    3. Flavio Borfecchia & Paola Crinò & Angelo Correnti & Anna Farneti & Luigi De Cecco & Domenica Masci & Luciano Blasi & Domenico Iantosca & Vito Pignatelli & Carla Micheli, 2020. "Assessing the Impact of Water Salinization Stress on Biomass Yield of Cardoon Bio-Energetic Crops through Remote Sensing Techniques," Resources, MDPI, vol. 9(10), pages 1-27, October.
    4. Anna Maria Kowalczyk & Szymon Czyża, 2022. "Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS," Energies, MDPI, vol. 15(18), pages 1-32, September.
    5. Dominika Čeryová & Tatiana Bullová & Natália Turčeková & Izabela Adamičková & Danka Moravčíková & Peter Bielik, 2020. "Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries," Resources, MDPI, vol. 9(9), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Goyal & Vishal Singh & Akshay Meena, 2015. "Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2875-2894, June.
    2. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    3. Ştefan Dragoş Cîrstea & Claudia Steluţa Martiş & Andreea Cîrstea & Anca Constantinescu-Dobra & Melinda Timea Fülöp, 2018. "Current Situation and Future Perspectives of the Romanian Renewable Energy," Energies, MDPI, vol. 11(12), pages 1-22, November.
    4. Bayazıt, Yıldırım & Bakış, Recep & Koç, Cengiz, 2017. "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 289-294.
    5. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    6. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    7. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    8. Ioannidou, Christina & O’Hanley, Jesse R., 2018. "Eco-friendly location of small hydropower," European Journal of Operational Research, Elsevier, vol. 264(3), pages 907-918.
    9. Mosier, Thomas M. & Sharp, Kendra V. & Hill, David F., 2016. "The Hydropower Potential Assessment Tool (HPAT): Evaluation of run-of-river resource potential for any global land area and application to Falls Creek, Oregon, USA," Renewable Energy, Elsevier, vol. 97(C), pages 492-503.
    10. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    11. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    12. Müller, Marc F. & Thompson, Sally E. & Kelly, Maggi N., 2016. "Bridging the information gap: A webGIS tool for rural electrification in data-scarce regions," Applied Energy, Elsevier, vol. 171(C), pages 277-286.
    13. Zaidi, Arjumand Z. & Khan, Majid, 2018. "Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 106-116.
    14. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    15. Görtz, J. & Aouad, M. & Wieprecht, S. & Terheiden, K., 2022. "Assessment of pumped hydropower energy storage potential along rivers and shorelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Prasasti, E.B. & Aouad, M. & Joseph, M. & Zangeneh, M. & Terheiden, K., 2024. "Optimization of pumped hydro energy storage design and operation for offshore low-head application and grid stabilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    18. Anas Mahmood Al-Juboori & Aytac Guven, 2016. "Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2517-2530, May.
    19. Fasipe, O.A. & Izinyon, O.C. & Ehiorobo, J.O., 2021. "Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin," Renewable Energy, Elsevier, vol. 178(C), pages 960-976.
    20. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:3:p:149-:d:258973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.