IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp654-665.html
   My bibliography  Save this article

Global riverine theoretical hydrokinetic resource assessment

Author

Listed:
  • Ridgill, Michael
  • Neill, Simon P.
  • Lewis, Matt J.
  • Robins, Peter E.
  • Patil, Sopan D.

Abstract

Hydrokinetic energy conversion refers to the conversion of kinetic energy in moving water to electricity. It offers an alternative to conventional hydropower, with benefits of modularity and scalability, in addition to being environmentally and socially less impactful. This study aims to determine the theoretical global riverine hydrokinetic resource. We use a 35 year modelled daily discharge data set and vectorised representation of rivers, with near-global coverage and suitable spatiotemporal resolution, to determine the mean annual energy yield of 2.94 million river reaches. The mean global resource (excluding Greenland) is estimated to be 58 400±109 TWh yr−1 (6.660±0.012 TW). Consideration of global spatial distribution, by river reach, illustrates regional variation and shows a tendency for potential to be concentrated along major rivers and in areas of significant elevation change. China, Russia and Brazil are found to be the countries with the greatest potential. After normalisation by total river length, Bhutan, Nepal and Tajikistan also show great potential. Hydrokinetic energy conversion can benefit isolated communities currently without access to electricity. We consider how the specific advantages of this particular technology have the potential to be combined with and complement other established forms of renewable energy technology, providing the means to support the reduction of energy poverty.

Suggested Citation

  • Ridgill, Michael & Neill, Simon P. & Lewis, Matt J. & Robins, Peter E. & Patil, Sopan D., 2021. "Global riverine theoretical hydrokinetic resource assessment," Renewable Energy, Elsevier, vol. 174(C), pages 654-665.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:654-665
    DOI: 10.1016/j.renene.2021.04.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Taiping & Yang, Zhaoqing, 2017. "A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 204-214.
    2. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    3. Punys, P. & Adamonyte, I. & Kvaraciejus, A. & Martinaitis, E. & Vyciene, G. & Kasiulis, E., 2015. "Riverine hydrokinetic resource assessment. A case study of a lowland river in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 643-652.
    4. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    5. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    8. Khan, M.J. & Iqbal, M.T. & Quaicoe, J.E., 2008. "River current energy conversion systems: Progress, prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2177-2193, October.
    9. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    10. Kanagawa, Makoto & Nakata, Toshihiko, 2008. "Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries," Energy Policy, Elsevier, vol. 36(6), pages 2016-2029, June.
    11. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    12. Bazilian, Morgan & Sagar, Ambuj & Detchon, Reid & Yumkella, Kandeh, 2010. "More heat and light," Energy Policy, Elsevier, vol. 38(10), pages 5409-5412, October.
    13. Bhattacharyya, Subhes C. & Ohiare, Sanusi, 2012. "The Chinese electricity access model for rural electrification: Approach, experience and lessons for others," Energy Policy, Elsevier, vol. 49(C), pages 676-687.
    14. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    15. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MacMillan, Andrew & Schell, Kristen R. & Roughley, Colter, 2023. "A predictive model of velocity for local hydrokinetic power assessment based on remote sensing data," Renewable Energy, Elsevier, vol. 211(C), pages 285-295.
    2. Luca Cacciali & Lorenzo Battisti & Sergio Dell’Anna, 2023. "Multi-Array Design for Hydrokinetic Turbines in Hydropower Canals," Energies, MDPI, vol. 16(5), pages 1-26, February.
    3. Eugenia Cornils Monteiro da Silva & Marcos Antonio Tavares Lira & Marcelo Carneiro Gonçalves & Osvaldo Augusto Vasconcelos de Oliveira Lopes da Silva & Wesly Jean & Raimundo Batista dos Santos Júnior, 2024. "The Role of Renewable Energies in Combating Poverty in Brazil: A Systematic Review," Sustainability, MDPI, vol. 16(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    2. Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
    3. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    4. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    6. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    7. Santos, Ivan Felipe Silva dos & Camacho, Ramiro Gustavo Ramirez & Tiago Filho, Geraldo Lúcio & Botan, Antonio Carlos Barkett & Vinent, Barbara Amoeiro, 2019. "Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: An approach using numerical predictions (CFD) and experimental data," Renewable Energy, Elsevier, vol. 143(C), pages 648-662.
    8. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    9. Torero, Maximo, 2014. "The Impact of Rural Electrification," MPRA Paper 61425, University Library of Munich, Germany.
    10. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    11. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.
    13. Garces, Estefany & Franco, Carlos J. & Tomei, Julia & Dyner, Isaac, 2023. "Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach," Energy Policy, Elsevier, vol. 172(C).
    14. Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
    15. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    16. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    17. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    18. Hill, Rebecca Lee & Curtin, Kevin M., 2011. "Solar powered light emitting diode distribution in developing countries: An assessment of potential distribution sites in rural Cambodia using network analyses," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 48-57, March.
    19. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    20. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:654-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.