IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1707-d341244.html
   My bibliography  Save this article

Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies

Author

Listed:
  • Lambros T. Doulos

    (School of Applied Arts, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece
    Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece)

  • Ioannis Sioutis

    (Nea odos S.A., Nea Erythraia, 15780 Athens, Greece)

  • Aris Tsangrassoulis

    (Department of Architecture, University of Thessaly, 38221 Volos, Greece)

  • Laurent Canale

    (LAPLACE (Laboratoire Plasma et Conversion d’Energie), Université de Toulouse, CNRS, INPT, UPS, 31077 Toulouse, France)

  • Kostantinos Faidas

    (Nea odos S.A., Nea Erythraia, 15780 Athens, Greece)

Abstract

Because of the absence of lighting calculation tools at the initial stage of tunnel design, the lighting systems are usually over-dimensioned, leading to over illumination and increased energy consumption. For this reason, a fine-tuning method for switching lighting stages according to the traffic weighted L20 luminance is proposed at no additional cost. The method was applied in a real –case scenario, where L20 luminance of the access zone at eleven (11) existing tunnels was calculated. The traffic weighted method of CR14380 was used in order to calculate the actual luminance levels for the entrance zone. The new transition zone, which decreases luminance curves, was produced and compared with the existing ones. Thus, a new switching control was proposed and programed for the Supervisory Control and Data Acquisition (SCADA) system of the tunnel. The signals of the corresponding eleven L20 meters for a period of eight days were used and the corresponding annual energy consumptions were calculated using the proposed switching program for each tunnel. The results were compared with a number of scenarios in which the existing lighting system was retrofitted with Lighting Emitting Diodes (LED) luminaires. In these scenarios, the new luminaire arrangement was based not only on the existing luminance demand value for the threshold zone, but also on the newly proposed one with two different control techniques (continuous dimming and 10% step dimming). The fine-tuning method for switching resulted in energy savings between 11% and 54% depending on the tunnel when the scenario of the existing installation at no extra cost was used. Energy savings, when LED luminaires were installed, varied between 57% (for the scenario with existing luminance demand value for the threshold zone and 10% step dimming) and 85% (for the scenario with the new calculated luminance demand and continuous dimming).

Suggested Citation

  • Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1707-:d:341244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferdinando Salata & Iacopo Golasi & Simone Bovenzi & Emanuele De Lieto Vollaro & Francesca Pagliaro & Lucia Cellucci & Massimo Coppi & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Energy Optimization of Road Tunnel Lighting Systems," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    2. Piotr Pracki & Krzysztof Skarżyński, 2020. "A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    3. Igor Wojnicki & Sebastian Ernst & Leszek Kotulski, 2016. "Economic Impact of Intelligent Dynamic Control in Urban Outdoor Lighting," Energies, MDPI, vol. 9(5), pages 1-14, April.
    4. Salvador Bará & Raul C. Lima & Jaime Zamorano, 2019. "Monitoring Long-Term Trends in the Anthropogenic Night Sky Brightness," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    5. Igor Wojnicki & Leszek Kotulski, 2018. "Improving Control Efficiency of Dynamic Street Lighting by Utilizing the Dual Graph Grammar Concept," Energies, MDPI, vol. 11(2), pages 1-15, February.
    6. Andreas Papalambrou & Lambros T. Doulos, 2019. "Identifying, Examining, and Planning Areas Protected from Light Pollution. The Case Study of Planning the First National Dark Sky Park in Greece," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    7. Karolina M. Zielinska-Dabkowska & Julia Hartmann & Carla Sigillo, 2019. "LED Light Sources and Their Complex Set-Up for Visually and Biologically Effective Illumination for Ornamental Indoor Plants," Sustainability, MDPI, vol. 11(9), pages 1-32, May.
    8. Igor Wojnicki & Konrad Komnata & Leszek Kotulski, 2019. "Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control," Energies, MDPI, vol. 12(8), pages 1-14, April.
    9. Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2019. "Characteristics and Effects of Conducted Emission from Grid-Connected and Stand-Alone Micro-Inverters in a Nano-Grid Road Lighting System," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    10. Igor Wojnicki & Leszek Kotulski, 2018. "Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    11. Manuel Jesús Hermoso-Orzáez & José Adolfo Lozano-Miralles & Rafael Lopez-Garcia & Paulo Brito, 2019. "Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case," Sustainability, MDPI, vol. 11(21), pages 1-26, October.
    12. Zhi Ting Ye & Chin Lung Chen & Lung-Chien Chen & Ching Ho Tien & Hong Thai Nguyen & Hsiang-Chen Wang, 2019. "Hollow Light Guide Module Involving Mini Light-Emitting Diodes for Asymmetric Luminous Planar Illuminators," Energies, MDPI, vol. 12(14), pages 1-12, July.
    13. Karolina M. Zielinska-Dabkowska & Kyra Xavia, 2019. "Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    14. Nona Schulte-Römer & Josiane Meier & Etta Dannemann & Max Söding, 2019. "Lighting Professionals versus Light Pollution Experts? Investigating Views on an Emerging Environmental Concern," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    15. Stamatios Ntanos & Grigorios Kyriakopoulos & Michalis Skordoulis & Miltiadis Chalikias & Garyfallos Arabatzis, 2019. "An Application of the New Environmental Paradigm (NEP) Scale in a Greek Context," Energies, MDPI, vol. 12(2), pages 1-18, January.
    16. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    17. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.
    18. Laura Moretti & Giuseppe Cantisani & Luigi Carrarini & Francesco Bezzi & Valentina Cherubini & Sebastiano Nicotra, 2019. "Italian Road Tunnels: Economic and Environmental Effects of an On-Going Project to Reduce Lighting Consumption," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gintare Stankuniene & Dalia Streimikiene & Grigorios L. Kyriakopoulos, 2020. "Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Hsing-Yuan Liao & Sheng-Yen Chen & Hien-Thanh Le & Wei-Lun Gao & Fu-Chun Chang & Chan-Chuan Wen & Yi-Chin Fang & Chao-Hsien Chen & Shun-Hsyung Chang & Hsiao-Yi Lee, 2021. "Design and Prototyping of Efficient LED Counter Beam Light with Free-Formed Surface for Meeting International Tunnel Lighting Standards," Energies, MDPI, vol. 14(2), pages 1-15, January.
    3. Lambros T. Doulos & Aris Tsangrassoulis & Evangelos-Nikolaos Madias & Spyros Niavis & Antonios Kontadakis & Panagiotis A. Kontaxis & Vassiliki T. Kontargyri & Katerina Skalkou & Frangiskos Topalis & E, 2020. "Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings," Energies, MDPI, vol. 13(15), pages 1-25, August.
    4. Diwakar Bista & Aayush Bista & Ashish Shrestha & Lambros T. Doulos & Pramod Bhusal & Georges Zissis & Frangiskos Topalis & Bhupendra Bimal Chhetri, 2021. "Lighting for Cultural and Heritage Site: An Innovative Approach for Lighting in the Distinct Pagoda-Style Architecture of Nepal," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    5. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    6. Yuwei Zhang & Peng Xue & Yifan Zhao & Zhikai Ni & Yani Quan & Jingchao Xie & Jiaping Liu, 2023. "A Novel Evaluation Method of Tunnel Access Zone Luminance Based on Measured Meteorological Data," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    7. Dalia Streimikiene & Grigorios L. Kyriakopoulos & Vidas Lekavicius & Indre Siksnelyte-Butkiene, 2021. "Energy Poverty and Low Carbon Just Energy Transition: Comparative Study in Lithuania and Greece," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 319-371, November.
    8. Atthakorn Thongtha & Piromporn Boontham, 2020. "Experimental Investigation of Natural Lighting Systems Using Cylindrical Glass for Energy Saving in Buildings," Energies, MDPI, vol. 13(10), pages 1-12, May.
    9. Latifa Bachouch & Neermalsing Sewraj & Pascal Dupuis & Laurent Canale & Georges Zissis & Lotfi Bouslimi & Lilia El Amraoui, 2021. "An Approach for Designing Mixed Light-Emitting Diodes to Match Greenhouse Plant Absorption Spectra," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    10. Sebastian Ernst & Leszek Kotulski & Adam Sędziwy & Igor Wojnicki, 2023. "Graph-Based Computational Methods for Efficient Management and Energy Conservation in Smart Cities," Energies, MDPI, vol. 16(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Ernst & Leszek Kotulski & Adam Sędziwy & Igor Wojnicki, 2023. "Graph-Based Computational Methods for Efficient Management and Energy Conservation in Smart Cities," Energies, MDPI, vol. 16(7), pages 1-21, April.
    2. Andreas Papalambrou & Lambros T. Doulos, 2019. "Identifying, Examining, and Planning Areas Protected from Light Pollution. The Case Study of Planning the First National Dark Sky Park in Greece," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    3. Adam Sȩdziwy & Artur Basiura & Igor Wojnicki, 2018. "Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    4. Laura Moretti & Giuseppe Cantisani & Luigi Carrarini & Francesco Bezzi & Valentina Cherubini & Sebastiano Nicotra, 2019. "Italian Road Tunnels: Economic and Environmental Effects of an On-Going Project to Reduce Lighting Consumption," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    5. Michelangelo Scorpio & Roberta Laffi & Massimiliano Masullo & Giovanni Ciampi & Antonio Rosato & Luigi Maffei & Sergio Sibilio, 2020. "Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities," Energies, MDPI, vol. 13(15), pages 1-26, July.
    6. Piotr Tomczuk & Marcin Chrzanowicz & Piotr Jaskowski & Marcin Budzynski, 2021. "Evaluation of Street Lighting Efficiency Using a Mobile Measurement System," Energies, MDPI, vol. 14(13), pages 1-25, June.
    7. Fouad Agramelal & Mohamed Sadik & Youssef Moubarak & Saad Abouzahir, 2023. "Smart Street Light Control: A Review on Methods, Innovations, and Extended Applications," Energies, MDPI, vol. 16(21), pages 1-42, November.
    8. Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    9. Croce, Antonello Ignazio & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Sustainable mobility and energy resources: A quantitative assessment of transport services with electrical vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    11. Theodor Terrich & Marek Balsky, 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    12. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    13. Suleman Sarwar & Dalia Streimikiene & Rida Waheed & Zouheir Mighri, 2021. "Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 419-440, March.
    14. Diwakar Bista & Aayush Bista & Ashish Shrestha & Lambros T. Doulos & Pramod Bhusal & Georges Zissis & Frangiskos Topalis & Bhupendra Bimal Chhetri, 2021. "Lighting for Cultural and Heritage Site: An Innovative Approach for Lighting in the Distinct Pagoda-Style Architecture of Nepal," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    15. Radoslava Kanianska & Jana Škvareninová & Stanislav Kaniansky, 2020. "Landscape Potential and Light Pollution as Key Factors for Astrotourism Development: A Case Study of a Slovak Upland Region," Land, MDPI, vol. 9(10), pages 1-16, October.
    16. Sebastian Ernst & Marek Łabuz & Kamila Środa & Leszek Kotulski, 2018. "Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    17. Alexandru Viorel Rusu & Catalin Daniel Galatanu & Gheorghe Livint & Dorin Dumitru Lucache, 2021. "Average Luminance Calculation in Street Lighting Design, Comparison between BS-EN 13201 and RP-08 Standards," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    18. Igor Wojnicki & Konrad Komnata & Leszek Kotulski, 2019. "Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control," Energies, MDPI, vol. 12(8), pages 1-14, April.
    19. Karolina M. Zielińska-Dabkowska & Kyra Xavia & Katarzyna Bobkowska, 2020. "Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives," Sustainability, MDPI, vol. 12(12), pages 1-32, June.
    20. Piotr Pracki & Krzysztof Skarżyński, 2020. "A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1707-:d:341244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.