IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p4024-d394283.html
   My bibliography  Save this article

Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings

Author

Listed:
  • Lambros T. Doulos

    (School of Applied Arts, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece
    Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece)

  • Aris Tsangrassoulis

    (Department of Architecture, University of Thessaly, 38221 Volos, Greece)

  • Evangelos-Nikolaos Madias

    (Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece)

  • Spyros Niavis

    (Department of Economics, University of Thessaly, 38221 Volos, Greece)

  • Antonios Kontadakis

    (Department of Architecture, University of Thessaly, 38221 Volos, Greece)

  • Panagiotis A. Kontaxis

    (Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
    Lighting Technology Laboratory, Department of Electrical and Electronics Engineering, School of Engineering, University of West Attica, Egaleo, 12241 Athens, Greece)

  • Vassiliki T. Kontargyri

    (High Voltage Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece)

  • Katerina Skalkou

    (School of Applied Arts, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece
    Department of Interior Architecture, School of Applied Arts & Culture, University of West Attica, 12243 Athens, Greece)

  • Frangiskos Topalis

    (Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece)

  • Evangelos Manolis

    (Capture Visualisation AB, AtlaBase Ltd., 11852 Athens, Greece)

  • Maro Sinou

    (Department of Interior Architecture, School of Applied Arts & Culture, University of West Attica, 12243 Athens, Greece)

  • Stelios Zerefos

    (School of Applied Arts, Hellenic Open University, Parodos Aristotelous 18, 26335 Patras, Greece)

Abstract

Daylight utilization significantly contributes to energy savings in office buildings. However, daylight integration requires careful design so as to include variations in daylight availability and maintain a balance between factors such as lighting quality and heat gain or loss. Designers with proper planning can not only improve the visual environment and create higher-quality spaces, but simultaneously minimize energy costs for buildings. The utilization of photosensors can exploit the benefits of daylighting by dimming the lighting system, so that no excessive luminous flux is produced, thus leading to energy savings as well as visual contentment. However, the human factor is crucial for the proper function of a lighting control system. Without its acceptance from the users, energy savings can be minimized or even negligible. The objective of this paper is to present a post-occupancy evaluation regarding occupant satisfaction and acceptance in relation to daylighting in offices equipped with automated daylight controls. In addition, the response of the users was compared with lighting measurements that were performed during the post-occupancy evaluation. Three case studies of office buildings with installed daylight-harvesting systems were examined. The age of the occupants was a crucial factor concerning their satisfaction in relation to the lighting levels. Aged users were more comfortable with lighting levels over 500lx, while young users were satisfied with 300lx. The impact of different control algorithms was outlined, with the integral reset algorithm performing poorly. The acceptance of the users for the closed loop systems maintained the expected energy savings of the daylight harvesting technique. Most of the occupants preferred to use daylight as a light source combined with artificial light but having the control to either override or switch it on and off at will. The results shown that a post-occupancy survey along with lighting measurements are significant for making an office environment a humancentric one.

Suggested Citation

  • Lambros T. Doulos & Aris Tsangrassoulis & Evangelos-Nikolaos Madias & Spyros Niavis & Antonios Kontadakis & Panagiotis A. Kontaxis & Vassiliki T. Kontargyri & Katerina Skalkou & Frangiskos Topalis & E, 2020. "Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings," Energies, MDPI, vol. 13(15), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4024-:d:394283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/4024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/4024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagiotis Chastas & Theodoros Theodosiou & Karolos J. Kontoleon & Dimitrios Bikas, 2017. "The Effect of Embodied Impact on the Cost-Optimal Levels of Nearly Zero Energy Buildings: A Case Study of a Residential Building in Thessaloniki, Greece," Energies, MDPI, vol. 10(6), pages 1-22, May.
    2. Stamatios Ntanos & Michalis Skordoulis & Grigorios Kyriakopoulos & Garyfallos Arabatzis & Miltiadis Chalikias & Spyros Galatsidas & Athanasios Batzios & Apostolia Katsarou, 2018. "Renewable Energy and Economic Growth: Evidence from European Countries," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    3. Dorin Beu & Calin Ciugudeanu & Mircea Buzdugan, 2018. "Circular Economy Aspects Regarding LED Lighting Retrofit—from Case Studies to Vision," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    4. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    5. Antonio Peña-García & Ferdinando Salata & Iacopo Golasi, 2019. "Decrease of the Maximum Speed in Highway Tunnels as a Measure to Foster Energy Savings and Sustainability," Energies, MDPI, vol. 12(4), pages 1-11, February.
    6. Constantinos A. Balaras & Kalliopi G. Droutsa & Elena G. Dascalaki & Simon Kontoyiannidis & Andrea Moro & Elena Bazzan, 2019. "Urban Sustainability Audits and Ratings of the Built Environment," Energies, MDPI, vol. 12(22), pages 1-36, November.
    7. Andreas Papalambrou & Lambros T. Doulos, 2019. "Identifying, Examining, and Planning Areas Protected from Light Pollution. The Case Study of Planning the First National Dark Sky Park in Greece," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    8. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Kalliopi G. Droutsa & Constantinos A. Balaras & Spyridon Lykoudis & Simon Kontoyiannidis & Elena G. Dascalaki & Athanassios A. Argiriou, 2020. "Baselines for Energy Use and Carbon Emission Intensities in Hellenic Nonresidential Buildings," Energies, MDPI, vol. 13(8), pages 1-29, April.
    10. Doukas, Haris & Nikas, Alexandros, 2020. "Decision support models in climate policy," European Journal of Operational Research, Elsevier, vol. 280(1), pages 1-24.
    11. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Optimization of External Envelope Insulation Thickness: A Parametric Study," Energies, MDPI, vol. 10(3), pages 1-19, February.
    12. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    13. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    14. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aris Tsangrassoulis & Lambros Doulos & Angelos Mylonas, 2021. "Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    2. Marcel Neberich & Frank Opferkuch, 2021. "Standardizing Melanopic Effects of Ocular Light for Ecological Lighting Design of Nonresidential Buildings—An Overview of Current Legislation and Accompanying Scientific Studies," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
    3. Lin Yang & Sha Liu & Jiaqi Liu, 2021. "The Interaction Effect of Occupant Behavior-Related Factors in Office Buildings Based on the DNAS Theory," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    4. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    2. Croce, Antonello Ignazio & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Sustainable mobility and energy resources: A quantitative assessment of transport services with electrical vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
    4. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    5. Yuan, Hao & Dai, Haifeng & Wei, Xuezhe & Ming, Pingwen, 2020. "A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach," Applied Energy, Elsevier, vol. 268(C).
    6. Hussain Humaira & Seung-Woo Baek & Hag-Wone Kim & Kwan-Yuhl Cho, 2019. "Circuit Topology and Small Signal Modeling of Variable Duty Cycle Controlled Three-Level LLC Converter," Energies, MDPI, vol. 12(20), pages 1-21, October.
    7. Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
    8. Hong Zhang & Hao Sun & Qian Zhang & Guanxun Kong, 2018. "Microgrid Spinning Reserve Optimization with Improved Information Gap Decision Theory," Energies, MDPI, vol. 11(9), pages 1-17, September.
    9. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    10. Lambros T. Doulos & Ioannis Sioutis & Aris Tsangrassoulis & Laurent Canale & Kostantinos Faidas, 2020. "Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Diwakar Bista & Aayush Bista & Ashish Shrestha & Lambros T. Doulos & Pramod Bhusal & Georges Zissis & Frangiskos Topalis & Bhupendra Bimal Chhetri, 2021. "Lighting for Cultural and Heritage Site: An Innovative Approach for Lighting in the Distinct Pagoda-Style Architecture of Nepal," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    12. Grigorios L. Kyriakopoulos & Vasilis C. Kapsalis & Konstantinos G. Aravossis & Miltiadis Zamparas & Alexandros Mitsikas, 2019. "Evaluating Circular Economy under a Multi-Parametric Approach: A Technological Review," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
    13. Chuanwang Sun & Lanyun Chen & Guangxiao Huang, 2019. "Decomposition Analysis of CO 2 Emissions Embodied in the International Trade of Russia," Sustainability, MDPI, vol. 12(1), pages 1-22, December.
    14. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.
    15. Dalia Streimikiene & Grigorios L. Kyriakopoulos & Vidas Lekavicius & Indre Siksnelyte-Butkiene, 2021. "Energy Poverty and Low Carbon Just Energy Transition: Comparative Study in Lithuania and Greece," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 319-371, November.
    16. Gintare Stankuniene & Dalia Streimikiene & Grigorios L. Kyriakopoulos, 2020. "Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    17. Ismael Pérez-Franco & Agustín García-García & Juan J. Maldonado-Briegas, 2020. "Energy Transition Towards a Greener and More Competitive Economy: The Iberian Case," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    18. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    19. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    20. Belqasem Aljafari & Jasmin Pamela Stephenraj & Indragandhi Vairavasundaram & Raja Singh Rassiah, 2022. "Steady State Modeling and Performance Analysis of a Wind Turbine-Based Doubly Fed Induction Generator System with Rotor Control," Energies, MDPI, vol. 15(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4024-:d:394283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.