IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1111-d144070.html
   My bibliography  Save this article

Hierarchical Energy Management of Microgrids including Storage and Demand Response

Author

Listed:
  • Songli Fan

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Qian Ai

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Longjian Piao

    (Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands)

Abstract

Battery energy storage (BES) and demand response (DR) are considered to be promising technologies to cope with the uncertainty of renewable energy sources (RES) and the load in the microgrid (MG). Considering the distinct prediction accuracies of the RES and load at different timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG energy management. Under this background, a hierarchical energy management framework is put forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling (DAS), hour-ahead scheduling (HAS), and real-time scheduling (RTS). In DAS, a scenario-based stochastic optimization model is established to minimize the expected operating cost of MG, while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load. Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation results on a seven-bus MG validate the effectiveness of the proposed methodology.

Suggested Citation

  • Songli Fan & Qian Ai & Longjian Piao, 2018. "Hierarchical Energy Management of Microgrids including Storage and Demand Response," Energies, MDPI, vol. 11(5), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1111-:d:144070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Xiandong & Jia, Hongjie & Wang, Dan & Yu, David C. & Chiang, Hsiao-Dong, 2015. "Hierarchical energy management system for multi-source multi-product microgrids," Renewable Energy, Elsevier, vol. 78(C), pages 621-630.
    2. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    3. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    4. Beibei Wang & Xiaocong Liu & Feng Zhu & Xiaoqing Hu & Wenlu Ji & Shengchun Yang & Ke Wang & Shuhai Feng, 2015. "Unit Commitment Model Considering Flexible Scheduling of Demand Response for High Wind Integration," Energies, MDPI, vol. 8(12), pages 1-22, December.
    5. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    6. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    7. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
    2. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    4. Jingfeng Chen & Ping Yang & Jiajun Peng & Yuqi Huang & Yaosheng Chen & Zhiji Zeng, 2018. "An Improved Multi-Timescale Coordinated Control Strategy for Stand-Alone Microgrid with Hybrid Energy Storage System," Energies, MDPI, vol. 11(8), pages 1-23, August.
    5. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Mostafa Rezaeimozafar & Mohsen Eskandari & Mohammad Hadi Amini & Mohammad Hasan Moradi & Pierluigi Siano, 2020. "A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids," Energies, MDPI, vol. 13(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    4. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    5. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    6. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    7. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    8. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    9. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    10. Finnah, Benedikt & Gönsch, Jochen, 2021. "Optimizing trading decisions of wind power plants with hybrid energy storage systems using backwards approximate dynamic programming," International Journal of Production Economics, Elsevier, vol. 238(C).
    11. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    12. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    13. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    14. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    15. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    16. Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
    17. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    19. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    20. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1111-:d:144070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.