IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1632-d340297.html
   My bibliography  Save this article

Energy Efficiency Comparison of Hydraulic Accumulators and Ultracapacitors

Author

Listed:
  • Jorge Leon-Quiroga

    (Purdue Polytechnic School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

  • Brittany Newell

    (Purdue Polytechnic School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

  • Mahesh Krishnamurthy

    (Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA)

  • Andres Gonzalez-Mancera

    (Department of Mechanical Engineering, Universidad de los Andes, Bogota 111711, Colombia)

  • Jose Garcia-Bravo

    (Purdue Polytechnic School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA)

Abstract

Energy regeneration systems are a key factor for improving energy efficiency in electrohydraulic machinery. This paper is focused on the study of electric energy storage systems (EESS) and hydraulic energy storage systems (HESS) for energy regeneration applications. Two test benches were designed and implemented to compare the performance of the systems under similar operating conditions. The electrical system was configured with a set of ultracapacitors, and the hydraulic system used a hydraulic accumulator. Both systems were designed to have the same energy storage capacity. Charge and discharge cycle experiments were performed for the two systems in order to compare their power density, energy density, cost, and efficiency. According to the experimentally obtained results, the power density in the hydraulic accumulator was 21.7% higher when compared with the ultracapacitors. Moreover, the cost/power ($/Watt) ratio in the hydraulic accumulator was 2.9 times smaller than a set of ultracapacitors of the same energy storage capacity. On the other hand, the energy density in the set of ultracapacitors was 9.4 times higher, and the cost/energy ($/kWh) ratio was 2.9 times smaller when compared with the hydraulic accumulator. Under the tested conditions, the estimated overall energy efficiency for the hydraulic accumulator was 87.7%, and the overall energy efficiency for the ultracapacitor was 78.7%.

Suggested Citation

  • Jorge Leon-Quiroga & Brittany Newell & Mahesh Krishnamurthy & Andres Gonzalez-Mancera & Jose Garcia-Bravo, 2020. "Energy Efficiency Comparison of Hydraulic Accumulators and Ultracapacitors," Energies, MDPI, vol. 13(7), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1632-:d:340297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Tianliang & Chen, Qiang & Ren, Haoling & Huang, Weiping & Chen, Qihuai & Fu, Shengjie, 2017. "Review of boom potential energy regeneration technology for hydraulic construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 358-371.
    2. Fouda, M.E. & Elwakil, A.S. & Radwan, A.G. & Allagui, A., 2016. "Power and energy analysis of fractional-order electrical energy storage devices," Energy, Elsevier, vol. 111(C), pages 785-792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, João & Maia Alves, J., 2023. "Sensitivity analysis of levelized cost of hydro-pneumatic electricity storage for grid support applications," Renewable Energy, Elsevier, vol. 219(P1).
    2. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Li, Zhongshen & Chen, Qihuai, 2021. "A double variable control load sensing system for electric hydraulic excavator," Energy, Elsevier, vol. 223(C).
    3. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Hydro-Pneumatic Accumulator Models for the Study of the Energy Efficiency of Hydraulic Systems," Energies, MDPI, vol. 16(18), pages 1-45, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    2. Wei Zhang & Jixin Wang & Shaofeng Du & Hongfeng Ma & Wenjun Zhao & Haojie Li, 2019. "Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends," Energies, MDPI, vol. 12(10), pages 1-26, May.
    3. Hernández-Balaguera, Enrique, 2023. "Fractional model of the chemical inductor," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    5. Do, Tri Cuong & Dinh, Truong Quang & Yu, Yingxiao & Ahn, Kyoung Kwan, 2023. "Innovative powertrain and advanced energy management strategy for hybrid hydraulic excavators," Energy, Elsevier, vol. 282(C).
    6. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    7. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    8. Do, Tri Cuong & Dang, Tri Dung & Dinh, Truong Quang & Ahn, Kyoung Kwan, 2021. "Developments in energy regeneration technologies for hydraulic excavators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Sajid, Mohammad & Raza, Zahid, 2017. "Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system," Energy, Elsevier, vol. 125(C), pages 258-274.
    10. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    11. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    12. Yan, Xiaopeng & Chen, Baijin & Yin, Fanglong & Ji, Hui & Ma, Zhonghai & Nie, Songlin, 2023. "Energy optimization of main hydraulic system in a forging press by simulation and experimental methods," Energy, Elsevier, vol. 277(C).
    13. Jakubowska-Ciszek, A. & Walczak, J., 2018. "Analysis of the transient state in a parallel circuit of the class RLβCα," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 287-300.
    14. Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2018. "Experimental evaluation of model-based control strategies of sodium-nickel chloride battery plus supercapacitor hybrid storage systems for urban electric vehicles," Applied Energy, Elsevier, vol. 228(C), pages 2478-2489.
    15. Truong, D.Q. & Marco, J. & Greenwood, D. & Harper, L. & Corrochano, D.G. & Yoon, J.I., 2018. "Challenges of micro/mild hybridisation for construction machinery and applicability in UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 301-320.
    16. Allagui, Anis & Benaoum, Hachemi & Olendski, Oleg, 2021. "On the Gouy–Chapman–Stern model of the electrical double-layer structure with a generalized Boltzmann factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    17. He, Xiangyu & Liu, Hao & He, Shanghong & Hu, Bili & Xiao, Guangxin, 2019. "Research on the energy efficiency of energy regeneration systems for a battery-powered hydrostatic vehicle," Energy, Elsevier, vol. 178(C), pages 400-418.
    18. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Chen, Qihuai & Li, Zhongshen, 2020. "Development and key technologies of pure electric construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
    20. Tan, Lisha & He, Xiangyu & Xiao, Guangxin & Jiang, Mengjun & Yuan, Yulin, 2022. "Design and energy analysis of novel hydraulic regenerative potential energy systems," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1632-:d:340297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.