IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1579-d339653.html
   My bibliography  Save this article

Prevention of Seabed Subsidence of Class-1 Gas Hydrate Deposits via CO 2 -EGR: A Numerical Study with Coupled Geomechanics-Hydrate Reaction-Multiphase Fluid Flow Model

Author

Listed:
  • Tzu-Keng Lin

    (Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Bieng-Zih Hsieh

    (Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

Abstract

The geomechanics effects and seabed subsidence are critical issues that should be considered in the development of a hydrate reservoir. The purpose of this study is to couple the geomechanics, hydrate reaction, and multiphase fluid flow modules to investigate the feasibility of CO 2 enhanced gas recovery (CO 2 -EGR) of a Class-1 hydrate deposit by observing the formation deformation, and the seabed subsidence. The production methods of depressurization and CO 2 -EGR are modeled, respectively. The production behaviors and seabed subsidence of different production methods are compared. The positive influence on the gas recovery for a Class-1 hydrate deposit via CO 2 -EGR is observed. The calculations of seabed subsidence showed a significant improvement can be achieved when CO 2 -EGR was used. The subsidence is only 6.8% of that from the pure depressurization in the case of a pressure drop of 30%. The effects of production pressure drop and production gas rate are investigated. The association between the gas production and the pressure drop of the well is different from the cases of pure depressurization and the CO 2 -EGR. The appropriate initial time for the CO 2 injection is tested. Slighter seabed subsidence is observed when the CO 2 injection is initiated earlier. The case of different injection pressure control showed that a lower injection pressure leads to a heavier seabed subsidence. A higher CO 2 fraction allowed in the produced gas stream results in a higher cumulative gas production, but there is no significant impact on the seabed subsidence.

Suggested Citation

  • Tzu-Keng Lin & Bieng-Zih Hsieh, 2020. "Prevention of Seabed Subsidence of Class-1 Gas Hydrate Deposits via CO 2 -EGR: A Numerical Study with Coupled Geomechanics-Hydrate Reaction-Multiphase Fluid Flow Model," Energies, MDPI, vol. 13(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1579-:d:339653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Han, Han, 2018. "Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system," Applied Energy, Elsevier, vol. 226(C), pages 916-923.
    2. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingping Li & Shuxia Li & Shuyue Ding & Zhenyuan Yin & Lu Liu & Shuaijun Li, 2022. "Numerical Simulation of Gas Production and Reservoir Stability during CO 2 Exchange in Natural Gas Hydrate Reservoir," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Ye, Hongyu & Chen, Daoyi & Yao, Yuanxin & Wu, Xuezhen & Li, Dayong & Zi, Mucong, 2024. "Exploration of production capacity-geomechanical evaluation and CO2 reinjection repair strategy in natural gas hydrate production by multilateral horizontal wells," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    3. Rahmad Syah & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & John William Grimaldo Guerrero & Mahyuddin K. M. Nasution & Afshin Davarpanah & Dadan Ramdan & Ahmed Sayed M. Metwally, 2021. "A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    4. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    5. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    6. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    7. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    8. Danqing Liu & Yilian Li & Ramesh Agarwal, 2020. "Evaluation of CO 2 Storage in a Shale Gas Reservoir Compared to a Deep Saline Aquifer in the Ordos Basin of China," Energies, MDPI, vol. 13(13), pages 1-18, July.
    9. Wang, Han & Zhang, Mingshan & Xia, Xuanzhe & Tian, Zhenhua & Qin, Xiangjie & Cai, Jianchao, 2024. "Lattice Boltzmann prediction of CO2 and CH4 competitive adsorption in shale porous media accelerated by machine learning for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 370(C).
    10. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    11. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    12. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    13. Wang, Bin & Dong, Hongsheng & Fan, Zhen & Liu, Shuyang & Lv, Xin & Li, Qingping & Zhao, Jiafei, 2020. "Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments," Applied Energy, Elsevier, vol. 262(C).
    14. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    15. Boning Zhang & Baochao Shan & Yulong Zhao & Liehui Zhang, 2020. "Review of Formation and Gas Characteristics in Shale Gas Reservoirs," Energies, MDPI, vol. 13(20), pages 1-50, October.
    16. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    17. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    18. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    19. Hou, Lei & Elsworth, Derek & Wang, Jintang & Zhou, Junping & Zhang, Fengshou, 2024. "Feasibility and prospects of symbiotic storage of CO2 and H2 in shale reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Lee, Yohan & Deusner, Christian & Kossel, Elke & Choi, Wonjung & Seo, Yongwon & Haeckel, Matthias, 2020. "Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1579-:d:339653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.