IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1449-d334652.html
   My bibliography  Save this article

Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort

Author

Listed:
  • Alessandro Cannavale

    (Dipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
    Istituto di Nanotecnologia, CNR Nanotec, Via Arnesano 16, 73100 Lecce, Italy)

  • Ubaldo Ayr

    (Dipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

  • Francesco Fiorito

    (Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

  • Francesco Martellotta

    (Dipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy)

Abstract

Electrochromic systems for smart windows make it possible to enhance energy efficiency in the construction sector, in both residential and tertiary buildings. The dynamic modulation of the spectral properties of a glazing, within the visible and infrared ranges of wavelengths, allows one to adapt the thermal and optical behavior of a glazing to the everchanging conditions of the environment in which the building is located. This allows appropriate control of the penetration of solar radiation within the building. The consequent advantages are manifold and are still being explored in the scientific literature. On the one hand, the reduction in energy consumption for summer air conditioning (and artificial lighting, too) becomes significant, especially in "cooling dominated" climates, reaching high percentages of saving, compared to common transparent windows; on the other hand, the continuous adaptation of the optical properties of the glass to the changing external conditions makes it possible to set suitable management strategies for the smart window, in order to offer optimal conditions to take advantage of daylight within the confined space. This review aims at a critical review of the relevant literature concerning the benefits obtainable in terms of energy consumption and visual comfort, starting from a survey of the main architectures of the devices available today.

Suggested Citation

  • Alessandro Cannavale & Ubaldo Ayr & Francesco Fiorito & Francesco Martellotta, 2020. "Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort," Energies, MDPI, vol. 13(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1449-:d:334652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tavares, P.F. & Gaspar, A.R. & Martins, A.G. & Frontini, F., 2014. "Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates," Energy Policy, Elsevier, vol. 67(C), pages 68-81.
    2. Anna Llordés & Guillermo Garcia & Jaume Gazquez & Delia J. Milliron, 2013. "Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites," Nature, Nature, vol. 500(7462), pages 323-326, August.
    3. Casini, Marco, 2018. "Active dynamic windows for buildings: A review," Renewable Energy, Elsevier, vol. 119(C), pages 923-934.
    4. Cannavale, Alessandro & Martellotta, Francesco & Cossari, Pierluigi & Gigli, Giuseppe & Ayr, Ubaldo, 2018. "Energy savings due to building integration of innovative solid-state electrochromic devices," Applied Energy, Elsevier, vol. 225(C), pages 975-985.
    5. Myunghwan Oh & Jaesung Park & Seungjun Roh & Chulsung Lee, 2018. "Deducing the Optimal Control Method for Electrochromic Triple Glazing through an Integrated Evaluation of Building Energy and Daylight Performance," Energies, MDPI, vol. 11(9), pages 1-22, August.
    6. Kamalisarvestani, M. & Saidur, R. & Mekhilef, S. & Javadi, F.S., 2013. "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    2. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    3. Zhina Rashidzadeh & Negar Heidari Matin, 2023. "A Comparative Study on Smart Windows Focusing on Climate-Based Energy Performance and Users’ Comfort Attributes," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    4. Lantonio, Nicole A. & Krarti, Moncef, 2022. "Simultaneous design and control optimization of smart glazed windows," Applied Energy, Elsevier, vol. 328(C).
    5. Anna Fensel & Juan Miguel Gómez Berbís, 2021. "Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(8), pages 1-2, April.
    6. Elissaios Sarmas & Vangelis Marinakis & Haris Doukas, 2022. "A data-driven multicriteria decision making tool for assessing investments in energy efficiency," Operational Research, Springer, vol. 22(5), pages 5597-5616, November.
    7. Syrrokostas, George & Leftheriotis, George & Yannopoulos, Spyros N., 2022. "Lessons learned from 25 years of development of photoelectrochromic devices: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Chiang, Yu-Jou & Chang, Ling-Yu & Cheng, Chao-Yuan & Chang, Ching-Cheng & Yeh, Chia-Lin & Huang, Chen-Jui & Jiang, Shi-Kai & Ho, Kuo-Chuan & Hwang, Bing-Joe & Yeh, Min-Hsin, 2022. "Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building," Renewable Energy, Elsevier, vol. 199(C), pages 103-111.
    9. Alessandro Cannavale, 2020. "Chromogenic Technologies for Energy Saving," Clean Technol., MDPI, vol. 2(4), pages 1-14, November.
    10. Marcin Brzezicki, 2021. "A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    11. Emily K. Schwartz & Moncef Krarti, 2022. "Review of Adoption Status of Sustainable Energy Technologies in the US Residential Building Sector," Energies, MDPI, vol. 15(6), pages 1-18, March.
    12. Atthakorn Thongtha & Piromporn Boontham, 2020. "Experimental Investigation of Natural Lighting Systems Using Cylindrical Glass for Energy Saving in Buildings," Energies, MDPI, vol. 13(10), pages 1-12, May.
    13. Jae-Hyang Kim & Jongin Hong & Seung-Hoon Han, 2021. "Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings," Sustainability, MDPI, vol. 13(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    2. Chambers, Jonathan & Hollmuller, Pierre & Bouvard, Olivia & Schueler, Andreas & Scartezzini, Jean-Louis & Azar, Elie & Patel, Martin K., 2019. "Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model," Energy, Elsevier, vol. 185(C), pages 136-147.
    3. Myunghwan Oh & Chulsung Lee & Jaesung Park & Kwangseok Lee & Sungho Tae, 2019. "Evaluation of Energy and Daylight Performance of Old Office Buildings in South Korea with Curtain Walls Remodeled Using Polymer Dispersed Liquid Crystal (PDLC) Films," Energies, MDPI, vol. 12(19), pages 1-26, September.
    4. Alessandro Cannavale, 2020. "Chromogenic Technologies for Energy Saving," Clean Technol., MDPI, vol. 2(4), pages 1-14, November.
    5. Sun, Yuying & Hao, Yingying & Wang, Dan & Wang, Wei & Deng, Shiming & Qi, Haoran & Xue, Peng, 2022. "A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment," Renewable Energy, Elsevier, vol. 194(C), pages 334-348.
    6. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    7. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    8. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    9. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    10. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Marcin Brzezicki, 2021. "A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    13. Paulo Joaquim Nunes & Rui Francisco Pinto Pereira & Sónia Pereira & Maria Manuela Silva & Elvira Fortunato & Verónica de Zea Bermudez & Mariana Fernandes, 2022. "Sol-Gel Derived Di-Ureasil Based Ormolytes for Electrochromic Devices," Energies, MDPI, vol. 16(1), pages 1-12, December.
    14. Zhina Rashidzadeh & Negar Heidari Matin, 2023. "A Comparative Study on Smart Windows Focusing on Climate-Based Energy Performance and Users’ Comfort Attributes," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    15. Myunghwan Oh & Minsu Jang & Jaesik Moon & Seungjun Roh, 2019. "Evaluation of Building Energy and Daylight Performance of Electrochromic Glazing for Optimal Control in Three Different Climate Zones," Sustainability, MDPI, vol. 11(1), pages 1-23, January.
    16. Krarti, Moncef, 2022. "Design optimization of smart glazing optical properties for office spaces," Applied Energy, Elsevier, vol. 308(C).
    17. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    18. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    19. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    20. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1449-:d:334652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.