IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1389-d333259.html
   My bibliography  Save this article

Ramping of Demand Response Event with Deploying Distinct Programs by an Aggregator

Author

Listed:
  • Omid Abrishambaf

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

  • Pedro Faria

    (GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

  • Zita Vale

    (IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

Abstract

System operators have moved towards the integration of renewable resources. However, these resources make network management unstable as they have variations in produced energy. Thus, some strategic plans, like demand response programs, are required to overcome these concerns. This paper develops an aggregator model with a precise vision of the demand response timeline. The model at first discusses the role of an aggregator, and thereafter is presented an innovative approach to how the aggregator deals with short and real-time demand response programs. A case study is developed for the model using real-time simulator and laboratory resources to survey the performance of the model under practical challenges. The real-time simulation uses an OP5600 machine that controls six laboratory resistive loads. Furthermore, the actual consumption profiles are adapted from the loads with a small-time step to precisely survey the behavior of each load. Also, remuneration costs of the event during the case study have been calculated and compared using both actual and simulated demand reduction profiles in the periods prior to event, such as the ramp period.

Suggested Citation

  • Omid Abrishambaf & Pedro Faria & Zita Vale, 2020. "Ramping of Demand Response Event with Deploying Distinct Programs by an Aggregator," Energies, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1389-:d:333259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    2. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Shaffer, Brendan & Samuelsen, Scott, 2019. "Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions," Applied Energy, Elsevier, vol. 235(C), pages 284-298.
    3. Omid Abrishambaf & Pedro Faria & Luis Gomes & João Spínola & Zita Vale & Juan M. Corchado, 2017. "Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management," Energies, MDPI, vol. 10(6), pages 1-14, June.
    4. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    5. Rosa Morales González & Shahab Shariat Torbaghan & Madeleine Gibescu & Sjef Cobben, 2016. "Harnessing the Flexibility of Thermostatic Loads in Microgrids with Solar Power Generation," Energies, MDPI, vol. 9(7), pages 1-24, July.
    6. Tomasz Sikorski & Michał Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyła & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2019. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects," Energies, MDPI, vol. 12(23), pages 1-21, November.
    7. Leonard, Matthew D. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy storage needs for the substitution of fossil fuel power plants with renewables," Renewable Energy, Elsevier, vol. 145(C), pages 951-962.
    8. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cátia Silva & Pedro Faria & Zita Vale, 2023. "Demand Response Implementation: Overview of Europe and United States Status," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. Jin Zhang & Liang Che & Lei Wang & Udaya K. Madawala, 2020. "Game-Theory Based V2G Coordination Strategy for Providing Ramping Flexibility in Power Systems," Energies, MDPI, vol. 13(19), pages 1-17, September.
    3. Zita Vale & Pedro Faria & Omid Abrishambaf & Luis Gomes & Tiago Pinto, 2021. "MARTINE—A Platform for Real-Time Energy Management in Smart Grids," Energies, MDPI, vol. 14(7), pages 1-18, March.
    4. Ningxuan Guo & Yinan Wang & Gangfeng Yan & Jian Hou, 2020. "Non-Cooperative Game in Block Bidding Markets Considering Demand Response," Energies, MDPI, vol. 13(13), pages 1-18, June.
    5. Pedro Faria & Zita Vale, 2023. "Demand Response in Smart Grids," Energies, MDPI, vol. 16(2), pages 1-3, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zita Vale & Pedro Faria & Omid Abrishambaf & Luis Gomes & Tiago Pinto, 2021. "MARTINE—A Platform for Real-Time Energy Management in Smart Grids," Energies, MDPI, vol. 14(7), pages 1-18, March.
    2. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    3. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
    4. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    5. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    8. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    9. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    10. Pedro Faria & Zita Vale, 2022. "Realistic Load Modeling for Efficient Consumption Management Using Real-Time Simulation and Power Hardware-in-the-Loop," Energies, MDPI, vol. 16(1), pages 1-15, December.
    11. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    12. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    13. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    14. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud & Mostafaeipour, Ali & Le, Ttu, 2024. "Evaluation of renewable energy projects based on sustainability goals using a hybrid pythagorean fuzzy-based decision approach," Energy, Elsevier, vol. 297(C).
    15. Tomasz Sikorski & Michal Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyla & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2020. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects," Energies, MDPI, vol. 13(12), pages 1-30, June.
    16. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    18. Maurer, Jona & Tschuch, Nicolai & Krebs, Stefan & Bhattacharya, Kankar & Cañizares, Claudio & Hohmann, Sören, 2023. "Toward transactive control of coupled electric power and district heating networks," Applied Energy, Elsevier, vol. 332(C).
    19. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    20. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1389-:d:333259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.