IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1185-d328578.html
   My bibliography  Save this article

A New Concept and a Test of a Bubble Pump System for Passive Heat Transport from Solar Collectors

Author

Listed:
  • Daniel Chludziński

    (Department of Electrical Engineering, Power Engineering, Electronics and Automation, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-736 Olsztyn, Poland)

  • Michał Duda

    (Department of Electrical Engineering, Power Engineering, Electronics and Automation, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-736 Olsztyn, Poland)

Abstract

Heat is usually transported by hydraulic circuits where the working medium is circulated by an electric pump. Heat can also be transferred by natural convection in passive systems. Passive systems where heat is transported downward have also been described and studied in the literature. These types of devices are referred to as reverse thermosiphons. However, systems of the type are not widely applied in practice due to the problems associated with the selection of the optimal working medium. In water-based thermosiphons, negative pressure is produced when water temperature falls below 100 °C, and non-condensable gas can enter the system. These problems are not encountered in systems where the working medium has a low boiling point. However, liquids with a low boiling point can be explosive, expensive, and harmful to the environment. The solution proposed in this paper combines the advantages of water and a liquid with a low boiling point. The described system relies on water as the heat transfer medium and small amounts of a substance with a low boiling point. The developed model was tested under laboratory conditions to validate the effectiveness of a passive system where heat is transported downward with the involvement of two working media. The system’s operating parameters are also described.

Suggested Citation

  • Daniel Chludziński & Michał Duda, 2020. "A New Concept and a Test of a Bubble Pump System for Passive Heat Transport from Solar Collectors," Energies, MDPI, vol. 13(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1185-:d:328578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Ligus & Daniel Zając & Maciej Masiukiewicz & Stanisław Anweiler, 2019. "A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios with the Use of Image Analysis," Energies, MDPI, vol. 12(4), pages 1-19, February.
    2. Michał Klugmann & Paweł Dąbrowski & Dariusz Mikielewicz, 2019. "Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop," Energies, MDPI, vol. 12(17), pages 1-22, September.
    3. Roonprasang, Natthaphon & Namprakai, Pichai & Pratinthong, Naris, 2008. "Experimental studies of a new solar water heater system using a solar water pump," Energy, Elsevier, vol. 33(4), pages 639-646.
    4. Ozsoy, Ahmet & Corumlu, Vahit, 2018. "Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications," Renewable Energy, Elsevier, vol. 122(C), pages 26-34.
    5. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    2. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    3. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    4. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    5. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    6. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    7. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
    8. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    9. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.
    10. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
    11. Bandaru, Rohinikumar & C., Muraleedharan & M.V., Pavan Kumar, 2019. "Modelling and dynamic simulation of solar-thermal energy conversion in an unconventional solar thermal water pump," Renewable Energy, Elsevier, vol. 134(C), pages 292-305.
    12. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    13. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    14. Vera-Medina, J. & Fernandez-Peruchena, C. & Guasumba, J. & Lillo-Bravo, I., 2021. "Performance analysis of factory-made thermosiphon solar water heating systems," Renewable Energy, Elsevier, vol. 164(C), pages 1215-1229.
    15. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    16. Zhong, Guisheng & Tang, Yong & Ding, Xinrui & Rao, Longshi & Chen, Gong & Tang, Kairui & Yuan, Wei & Li, Zongtao, 2020. "Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions," Renewable Energy, Elsevier, vol. 149(C), pages 1032-1039.
    17. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    18. Gao, Datong & Gao, Guangtao & Cao, Jingyu & Zhong, Shuai & Ren, Xiao & Dabwan, Yousef N. & Hu, Maobin & Jiao, Dongsheng & Kwan, Trevor Hocksun & Pei, Gang, 2020. "Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature," Applied Energy, Elsevier, vol. 269(C).
    19. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    20. Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications," Applied Energy, Elsevier, vol. 239(C), pages 658-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1185-:d:328578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.