IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p735-d208378.html
   My bibliography  Save this article

A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios with the Use of Image Analysis

Author

Listed:
  • Grzegorz Ligus

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

  • Daniel Zając

    (Kelvion Sp. z o.o.., ul. Kobaltowa 2, 45-641 Opole, Poland)

  • Maciej Masiukiewicz

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

  • Stanisław Anweiler

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

Abstract

This paper presents experimental studies on the optimization of two-phase fluid flow in an airlift pump. Airlift pumps, also known as mammoth pumps, are devices applied for vertical transport of liquids with the use of gas. Their operating principle involves the existence of a density gradient. This paper reports the results of experimental studies into the hydrodynamic effects of the airlift pump. The studies involved optical imaging of two-phase gas-liquid flow in a riser pipe. The visualization was performed with high-speed visualization techniques. The studies used a transparent model of airlift pump with a rectangular cross-section of the riser. The assessment of the airlift pump operation is based on the image grey-level analysis to provide the identification of two-phase flow regimes. The scope of the study also involved the determination of void fraction and pressure drops. The tests were carried out in a channel with dimensions 35 × 20 × 2045 mm with the gas flux range 0.2–15.0 m 3 /h. For the assessment of the two-phase flow pattern Probability Density Function (PDF) was applied. On the basis of the obtained results, a new method for selecting the optimum operating regime of airlift pump was derived. This method provides the finding of stability and efficiency of liquid transport. It can also be applied to determine the correlation between the total lifting efficiency and the required gas flux for proper operation of the airlift pump.

Suggested Citation

  • Grzegorz Ligus & Daniel Zając & Maciej Masiukiewicz & Stanisław Anweiler, 2019. "A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios with the Use of Image Analysis," Energies, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:735-:d:208378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarek A. Ganat & Meftah Hrairi, 2018. "Gas–Liquid Two-Phase Upward Flow through a Vertical Pipe: Influence of Pressure Drop on the Measurement of Fluid Flow Rate," Energies, MDPI, vol. 11(11), pages 1-23, October.
    2. Dan Qi & Honglan Zou & Yunhong Ding & Wei Luo & Junzheng Yang, 2018. "Engineering Simulation Tests on Multiphase Flow in Middle- and High-Yield Slanted Well Bores," Energies, MDPI, vol. 11(10), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    2. Maciej Masiukiewicz & Stanisław Anweiler, 2021. "Precise Evaluation of Gas–Liquid Two-Phase Flow Pattern in a Narrow Rectangular Channel with Stereology Method," Energies, MDPI, vol. 14(11), pages 1-16, May.
    3. Xinfeng Ge & Jing Zhang & Jian Zhang & Demin Liu & Yuan Zheng & Huixiang Chen, 2022. "Review of Research on the Three-Dimensional Transition Process of Large-Scale Low-Lift Pump," Energies, MDPI, vol. 15(22), pages 1-34, November.
    4. Daniel Chludziński & Michał Duda, 2020. "A New Concept and a Test of a Bubble Pump System for Passive Heat Transport from Solar Collectors," Energies, MDPI, vol. 13(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianchao Cai & Shuyu Sun & Ali Habibi & Zhien Zhang, 2019. "Emerging Advances in Petrophysics: Porous Media Characterization and Modeling of Multiphase Flow," Energies, MDPI, vol. 12(2), pages 1-5, January.
    2. Artur J. Jaworski, 2019. "Special Issue “Fluid Flow and Heat Transfer”," Energies, MDPI, vol. 12(16), pages 1-4, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:735-:d:208378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.