IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1129-d327642.html
   My bibliography  Save this article

The Rule of Carrying Cuttings in Horizontal Well Drilling of Marine Natural Gas Hydrate

Author

Listed:
  • Na Wei

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Yang Liu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Zhenjun Cui

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Lin Jiang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Wantong Sun

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Hanming Xu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Xiaoran Wang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Tong Qiu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Horizontal well drilling is a highly effective way to develop marine gas hydrate. During the drilling of horizontal wells in the marine gas hydrate layer, hydrate particles and cutting particles will migrate with the drilling fluid in the horizontal annulus. The gravity of cuttings is easy to deposit in the horizontal section, leading to the accumulation of cuttings. Then, a cuttings bed will be formed, which is not beneficial to bring up cuttings and results in the decrease of wellbore purification ability. Then the extended capability of the horizontal well will be restricted and the friction torque of the drilling tool will increase, which may cause blockage of the wellbore in severe cases. Therefore, this paper establishes geometric models of different hole enlargement ways: right-angle expansion, 45-degree angle expansion, and arc expanding. The critical velocity of carrying rock plates are obtained by EDEM and FLUENT coupling simulation in different hydrate abundance, different hydrate-cuttings particle sizes and different drilling fluid density. Then, the effects of hole enlargement way, particle size, hydrate abundance and drilling fluid density on rock carrying capacity are analyzed by utilizing an orthogonal test method. Simulation results show that: the critical flow velocity required for carrying cuttings increases with the increase of the particle size of the hydrate-cuttings particle when the hydrate abundance is constant. The critical flow velocity decreases with the increase of drilling fluid density, the critical flow velocity carrying cuttings decreases with the increase of hydrate abundance when the density of the drilling fluid is constant. Orthogonal test method was used to evaluate the influence of various factors on rock carrying capacity: hydrate-cuttings particle size > hole enlargement way > hydrate abundance > drilling fluid density. This study provides an early technical support for the construction parameter optimization and well safety control of horizontal well exploitation models in a marine natural gas hydrate reservoir.

Suggested Citation

  • Na Wei & Yang Liu & Zhenjun Cui & Lin Jiang & Wantong Sun & Hanming Xu & Xiaoran Wang & Tong Qiu, 2020. "The Rule of Carrying Cuttings in Horizontal Well Drilling of Marine Natural Gas Hydrate," Energies, MDPI, vol. 13(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1129-:d:327642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Na & Xu, Chaoyang & Meng, Yingfeng & Li, Gao & Ma, Xiao & Liu, Anqi, 2018. "Numerical simulation of gas-liquid two-phase flow in wellbore based on drift flux model," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 175-191.
    2. Jing-Chun Feng & Xiao-Sen Li & Gang Li & Bo Li & Zhao-Yang Chen & Yi Wang, 2014. "Numerical Investigation of Hydrate Dissociation Performance in the South China Sea with Different Horizontal Well Configurations," Energies, MDPI, vol. 7(8), pages 1-22, July.
    3. Michael T. Kezirian & S. Leigh Phoenix, 2017. "Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves," Energies, MDPI, vol. 10(6), pages 1-8, June.
    4. Bei Liu & Qing Yuan & Ke-Hua Su & Xin Yang & Ben-Cheng Wu & Chang-Yu Sun & Guang-Jin Chen, 2012. "Experimental Simulation of the Exploitation of Natural Gas Hydrate," Energies, MDPI, vol. 5(2), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Tan & Hui Zhang, 2021. "Study on the Mechanical Extended-Reach Limit Prediction Model of Horizontal Drilling with Dual-Channel Drillpipes," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Lipei Ding & Yuning Sun & Zhiming Wang & Weibin Song & Yonglong Wang, 2022. "Parameter Optimization of Drilling Cuttings Entering into Sieve Holes on a Surface Multi-Hole (SMH) Drill Pipe," Energies, MDPI, vol. 15(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    2. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    3. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    4. Yuan Chen & Shiguo Wu & Ting Sun & Shu Jia, 2022. "Study of the Appropriate Well Types and Parameters for the Safe and Efficient Production of Marine Gas Hydrates in Unconsolidated Reservoirs," Energies, MDPI, vol. 15(13), pages 1-16, June.
    5. Lin Yang & Chen Chen & Rui Jia & Youhong Sun & Wei Guo & Dongbin Pan & Xitong Li & Yong Chen, 2018. "Influence of Reservoir Stimulation on Marine Gas Hydrate Conversion Efficiency in Different Accumulation Conditions," Energies, MDPI, vol. 11(2), pages 1-16, February.
    6. Yun-Pei Liang & Xiao-Sen Li & Bo Li, 2015. "Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System," Energies, MDPI, vol. 8(10), pages 1-22, September.
    7. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Chen, Zhao-Yang, 2015. "Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 145(C), pages 69-79.
    8. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.
    9. Qi Nie & Meiqiu Li & Sizhu Zhou, 2022. "Structural Parameter Optimization of the Helical Blade of the Variable-Pitch, Downhole, Cyclone Separator Based on the Response Surface Method," Energies, MDPI, vol. 15(18), pages 1-15, September.
    10. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2016. "Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand," Applied Energy, Elsevier, vol. 174(C), pages 181-191.
    11. Shunzuo Qiu & Guorong Wang, 2020. "Effects of Reservoir Parameters on Separation Behaviors of the Spiral Separator for Purifying Natural Gas Hydrate," Energies, MDPI, vol. 13(20), pages 1-15, October.
    12. Alberto Maria Gambelli & Federico Rossi, 2023. "Review on the Usage of Small-Chain Hydrocarbons (C 2 —C 4 ) as Aid Gases for Improving the Efficiency of Hydrate-Based Technologies," Energies, MDPI, vol. 16(8), pages 1-22, April.
    13. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    14. Shunzuo Qiu & Guorong Wang & Leizhen Wang & Xing Fang, 2019. "A Downhole Hydrocyclone for the Recovery of Natural Gas Hydrates and Desanding: The CFD Simulation of the Flow Field and Separation Performance," Energies, MDPI, vol. 12(17), pages 1-18, August.
    15. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    16. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    17. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    18. Shmulik Pinkert, 2019. "Dilation Behavior of Gas-Saturated Methane-Hydrate Bearing Sand," Energies, MDPI, vol. 12(15), pages 1-14, July.
    19. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    20. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1129-:d:327642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.