IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v31y2014icp778-791.html
   My bibliography  Save this article

The status of natural gas hydrate research in China: A review

Author

Listed:
  • Song, Yongchen
  • Yang, Lei
  • Zhao, Jiafei
  • Liu, Weiguo
  • Yang, Mingjun
  • Li, Yanghui
  • Liu, Yu
  • Li, Qingping

Abstract

Over the past century, fossil fuels have provided the majority of China's energy. However, their extensive utilization leads to a shortage and environmental pollution. Recently, submarine and permafrost gas hydrate deposits have been investigated as a possible clean and sustainable energy source by governmental institutions, research organizations, and energy industries in China. The primary objective of this paper is to review the potential studies pertaining to gas hydrate exploration and resource assessment, the safe and efficient exploitation of gas hydrates and the basic properties of gas hydrates. To date, there are over 20 institutions and organizations in China committed to gas hydrate investigation, among which the Guangzhou Marine Geological Survey (GMGS) and the Chinese Academy of Geological Sciences (CAGS) etc. primarily focus on gas hydrate exploration research, while the China National Offshore Oil Corporation (CNOOC) Research Center, Guangzhou Institute of Energy Conversion (GIEC) and China University of Petroleum-Beijing (CUPB) etc. concentrate on gas hydrate mining technologies. In this paper, the occurrence and exploration of gas hydrates in both permafrost regions and the continental slope of China have been determined from numerous research contributions and are presented. Moreover, the latest progress in gas hydrate fundamental studies, including hydrate phase equilibria, hydrate formation mechanisms, hydrate thermal physical properties and the acoustics and resistivity characteristics of gas hydrates are briefly reviewed, and relevant data are gathered and compared. Emphasis is also placed on gas hydrate mining technologies and gas production using depressurization methods, thermal stimulation methods or other methods. Furthermore, the security of natural gas hydrate-bearing sediments during gas production and the environmental impacts of gas hydrate are identified. With additional financial and political support and advanced research facilities, research on gas hydrates in China is progressing rapidly but is still in its early developing stage, thus, future work should be undertaken with greater diligence.

Suggested Citation

  • Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
  • Handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:778-791
    DOI: 10.1016/j.rser.2013.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113008393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaihua Xue & Jiafei Zhao & Yongchen Song & Weiguo Liu & Weihaur Lam & Yiming Zhu & Yu Liu & Chuanxiao Cheng & Di Liu, 2012. "Direct Observation of THF Hydrate Formation in Porous Microstructure Using Magnetic Resonance Imaging," Energies, MDPI, vol. 5(4), pages 1-13, April.
    2. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    3. Yanghui Li & Yongchen Song & Weiguo Liu & Feng Yu, 2012. "Experimental Research on the Mechanical Properties of Methane Hydrate-Ice Mixtures," Energies, MDPI, vol. 5(2), pages 1-12, January.
    4. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    5. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    6. Jiafei Zhao & Chuanxiao Cheng & Yongchen Song & Weiguo Liu & Yu Liu & Kaihua Xue & Zihao Zhu & Zhi Yang & Dayong Wang & Mingjun Yang, 2012. "Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method," Energies, MDPI, vol. 5(5), pages 1-17, May.
    7. Li, Gang & Li, Xiao-Sen & Wang, Yi & Zhang, Yu, 2011. "Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator," Energy, Elsevier, vol. 36(5), pages 3170-3178.
    8. Li, Xiao-Sen & Wang, Yi & Duan, Li-Ping & Li, Gang & Zhang, Yu & Huang, Ning-Sheng & Chen, Duo-Fu, 2012. "Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff," Applied Energy, Elsevier, vol. 94(C), pages 48-57.
    9. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    10. Li, Xiao-Sen & Li, Bo & Li, Gang & Yang, Bo, 2012. "Numerical simulation of gas production potential from permafrost hydrate deposits by huff and puff method in a single horizontal well in Qilian Mountain, Qinghai province," Energy, Elsevier, vol. 40(1), pages 59-75.
    11. Bei Liu & Qing Yuan & Ke-Hua Su & Xin Yang & Ben-Cheng Wu & Chang-Yu Sun & Guang-Jin Chen, 2012. "Experimental Simulation of the Exploitation of Natural Gas Hydrate," Energies, MDPI, vol. 5(2), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    2. Li, Gang & Li, Xiao-Sen & Li, Bo & Wang, Yi, 2014. "Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator," Energy, Elsevier, vol. 64(C), pages 298-306.
    3. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Feng, Jing-Chun, 2014. "Experimental investigation into scaling models of methane hydrate reservoir," Applied Energy, Elsevier, vol. 115(C), pages 47-56.
    4. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    5. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2015. "Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods," Energy, Elsevier, vol. 90(P2), pages 1931-1948.
    6. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    7. Li, Gang & Li, Xiao-Sen & Yang, Bo & Duan, Li-Ping & Huang, Ning-Sheng & Zhang, Yu & Tang, Liang-Guang, 2013. "The use of dual horizontal wells in gas production from hydrate accumulations," Applied Energy, Elsevier, vol. 112(C), pages 1303-1310.
    8. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    9. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Feng, Jing-Chun, 2013. "A three-dimensional study on methane hydrate decomposition with different methods using five-spot well," Applied Energy, Elsevier, vol. 112(C), pages 83-92.
    10. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    11. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    12. Zhixue Sun & Ying Xin & Qiang Sun & Ruolong Ma & Jianguang Zhang & Shuhuan Lv & Mingyu Cai & Haoxuan Wang, 2016. "Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model," Energies, MDPI, vol. 9(9), pages 1-20, September.
    13. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    14. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    15. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    16. Yun-Pei Liang & Xiao-Sen Li & Bo Li, 2015. "Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System," Energies, MDPI, vol. 8(10), pages 1-22, September.
    17. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    18. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
    19. Bhade, Piyush & Phirani, Jyoti, 2015. "Gas production from layered methane hydrate reservoirs," Energy, Elsevier, vol. 82(C), pages 686-696.
    20. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:778-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.