IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3257-d260428.html
   My bibliography  Save this article

A Downhole Hydrocyclone for the Recovery of Natural Gas Hydrates and Desanding: The CFD Simulation of the Flow Field and Separation Performance

Author

Listed:
  • Shunzuo Qiu

    (Department of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
    State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Guorong Wang

    (Department of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Leizhen Wang

    (Department of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Xing Fang

    (Department of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The application of a hydrocyclone to recycle NGH and desand during NGH exploitation is a novel idea. The flow field and performance of this hydrocyclone is in the frontier of the research in this field and is unclear so far. This research aimed to reveal the flow field characteristics and performance of NGH downhole hydrocyclones. In this paper, flow field, solid phase particle volume distribution and separation efficiency were investigated according to the two objectives of NGH recovery efficiency and sand removal efficiency with different inlet velocities by computational fluid simulations (CFD)-FLUENT software. The results show that the short circuit flow contributed to the recovery of NGH. Axial velocity is a decisive factor in balancing the two objectives of NGH recovery efficiency and sand removal efficiency. In addition, the same as those in traditional hydrocyclones, the static pressure, tangential velocity and turbulence intensity play key roles in separation performance, hydrocyclone performance can be improved by increasing the inlet velocity. On the other hand, most separation efficiencies were greater than 80%, when the particle size was larger than 15 µm, and the differential pressure was less than 0.6 MPa. Therefore, all the above results confirm that hydrocyclone has good performance in NGH exploitation, and the basis of its structural design and optimization are provided.

Suggested Citation

  • Shunzuo Qiu & Guorong Wang & Leizhen Wang & Xing Fang, 2019. "A Downhole Hydrocyclone for the Recovery of Natural Gas Hydrates and Desanding: The CFD Simulation of the Flow Field and Separation Performance," Energies, MDPI, vol. 12(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3257-:d:260428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael T. Kezirian & S. Leigh Phoenix, 2017. "Natural Gas Hydrate as a Storage Mechanism for Safe, Sustainable and Economical Production from Offshore Petroleum Reserves," Energies, MDPI, vol. 10(6), pages 1-8, June.
    2. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen, 2017. "Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs," Energy, Elsevier, vol. 125(C), pages 62-71.
    3. Jingsheng Lu & Youming Xiong & Dongliang Li & Xiaodong Shen & Qi Wu & Deqing Liang, 2018. "Experimental Investigation of Characteristics of Sand Production in Wellbore during Hydrate Exploitation by the Depressurization Method," Energies, MDPI, vol. 11(7), pages 1-17, June.
    4. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxu, Duan & Jiwei, Wu & Yuan, Huang & Haitao, Lin & Shouwei, Zhou & Junlong, Zhu & Shaohua, Nie & Guorong, Wang & Liang, Ma & Hualin, Wang, 2023. "Achieving effective and simultaneous consolidation breaking and sand removal in solid fluidization development of natural gas hydrate," Applied Energy, Elsevier, vol. 351(C).
    2. Leizhen Wang & Guorong Wang, 2020. "Experimental and Theoretical Study on the Critical Breaking Velocity of Marine Natural Gas Hydrate Sediments Breaking by Water Jet," Energies, MDPI, vol. 13(7), pages 1-11, April.
    3. Qi Nie & Meiqiu Li & Sizhu Zhou, 2022. "Structural Parameter Optimization of the Helical Blade of the Variable-Pitch, Downhole, Cyclone Separator Based on the Response Surface Method," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunzuo Qiu & Guorong Wang, 2020. "Effects of Reservoir Parameters on Separation Behaviors of the Spiral Separator for Purifying Natural Gas Hydrate," Energies, MDPI, vol. 13(20), pages 1-15, October.
    2. Li, Xiaodong & Wan, Yizhao & Lei, Gang & Sun, Jiaxin & Cheng, Wan & Dou, Xiaofeng & Zhao, Yingjie & Ning, Fulong, 2024. "Numerical investigation of gas and sand production from hydrate-bearing sediments by incorporating sand migration based on IMPES method," Energy, Elsevier, vol. 288(C).
    3. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    4. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    5. Lu, Nu & Hou, Jian & Liu, Yongge & Barrufet, Maria A. & Ji, Yunkai & Xia, Zhizeng & Xu, Boyue, 2018. "Stage analysis and production evaluation for class III gas hydrate deposit by depressurization," Energy, Elsevier, vol. 165(PB), pages 501-511.
    6. Yun-Pei Liang & Shu Liu & Qing-Cui Wan & Bo Li & Hang Liu & Xiao Han, 2018. "Comparison and Optimization of Methane Hydrate Production Process Using Different Methods in a Single Vertical Well," Energies, MDPI, vol. 12(1), pages 1-21, December.
    7. Wu, Tianwei & Wan, Kun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2023. "Heat utilization efficiency analysis of gas production from hydrate reservoir by depressurization in conjunction with heat stimulation," Energy, Elsevier, vol. 263(PA).
    8. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    9. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    10. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    11. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    12. Lin Liu & Xiumei Zhang & Xiuming Wang, 2021. "Wave Propagation Characteristics in Gas Hydrate-Bearing Sediments and Estimation of Hydrate Saturation," Energies, MDPI, vol. 14(4), pages 1-21, February.
    13. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    14. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    16. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    17. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    18. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    20. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3257-:d:260428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.