IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6640-d1240956.html
   My bibliography  Save this article

Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants

Author

Listed:
  • Dariusz Bęben

    (Oil and Gas Institute—National Research Institute, Ul. Lubicz 25 A, 31-503 Krakow, Poland)

  • Teresa Steliga

    (Oil and Gas Institute—National Research Institute, Ul. Lubicz 25 A, 31-503 Krakow, Poland)

Abstract

In recent years, the increase in energy prices and demand has been driven by the post-pandemic economic recovery. Of the various energy sources, oil and natural gas remain the most important source of energy production and consumption after coal. Oil and gas pipelines are a key component of the overall energy infrastructure, transporting oil and gas from mines to end users, so the reliability and safety of these pipelines is critical. The oil and gas industry incurs large expenses for the removal of failures related to, among others, corrosion of pipelines caused by the presence of Hg, CO 2 H 2 S, carbonates and chlorides in reservoir waters. Therefore, pipeline operators must constantly monitor and prevent corrosion. Corrosion failure losses are a major motivation for the oil and gas industry to develop accurate monitoring models using non-destructive NDT methods based on test results and failure frequency observations. Observing the locations of frequent pipeline failures and monitoring and applying corrosion protection to pipelines play an important role in reducing failure rates and ultimately increasing the economic and safety performance of pipelines. Monitoring and prevention efforts support the decision-making process in the oil and gas industry by predicting failures and determining the timing of maintenance or replacement of corroded pipelines. We have presented methods of prevention through the use of corrosion inhibitors in crude oil and natural gas transmission pipelines, as well as various factors that influence their application. In this article, a review of corrosion rate monitoring systems is conducted, and a range of control and monitoring scenarios is proposed. This knowledge will aid scientists and practitioners in prioritizing their policies, not only to choose the appropriate monitoring technique but also to enhance corrosion protection effectiveness.

Suggested Citation

  • Dariusz Bęben & Teresa Steliga, 2023. "Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants," Energies, MDPI, vol. 16(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6640-:d:1240956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.
    2. Jiehao Duan & Changjun Li & Jin Jin, 2022. "Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction," Energies, MDPI, vol. 15(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Zhu & Shengqi Yang & Yuanyuan Pu & Lijun Sun & Min Wang & Kun Du, 2023. "Advanced Progress of the Geo-Energy Technology in China," Energies, MDPI, vol. 16(19), pages 1-6, September.
    2. Wan Zhang & Ruihao Shen & Ning Xu & Haoran Zhang & Yongtu Liang, 2020. "Study on Optimization of Active Control Schemes for Considering Transient Processes in the Case of Pipeline Leakage," Energies, MDPI, vol. 13(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6640-:d:1240956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.