IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i1d10.1007_s10845-016-1254-6.html
   My bibliography  Save this article

Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry

Author

Listed:
  • Pedro Malaca

    (University of Porto
    SARKKIS Robotics, Lda.)

  • Luis F. Rocha

    (INESC-TEC, INESC Technology and Science)

  • D. Gomes

    (University of Coimbra)

  • João Silva

    (SARKKIS Robotics, Lda.)

  • Germano Veiga

    (INESC-TEC, INESC Technology and Science)

Abstract

This paper focus on the classification, in real-time and under uncontrolled lighting, of fabric textures for the automotive industry. Many industrial processes have spatial constraints that limit the effective control of illumination of their vision based systems, hindering their effectiveness. The ability to overcome these problems using robust classification methods with suitable pre-processing techniques and choice of characteristics will increase the efficiency of this type of solutions with obvious production gains and thus economical. For this purpose, this paper studied and analyzed various pre-processing techniques, and selected the most appropriate fabric characteristics for the considered industrial case scenario. The methodology followed was based on the comparison of two different machine learning classifiers, ANN and SVM, using a large set of samples with a large variability of lightning conditions to faithfully simulate the industrial environment. The obtained solution shows the sensibility of ANN over SVM considering the number of features and the size of the training set, showing the better effectiveness and robustness of the last. The characteristics vector uses histogram equalization, Laws filter and Sobel filter, and multi-scale analysis. By using a correlation based method was possible to reduce the number of features used, achieving a better balanced between processing time and classification ratio.

Suggested Citation

  • Pedro Malaca & Luis F. Rocha & D. Gomes & João Silva & Germano Veiga, 2019. "Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 351-361, January.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1254-6
    DOI: 10.1007/s10845-016-1254-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1254-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1254-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Pinto & David D Cox & James J DiCarlo, 2008. "Why is Real-World Visual Object Recognition Hard?," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhui Ge & Licheng Liu & Junxi Sun & Hong Zhao & Langming Zhou & Tianle Cheng & Changyan Xiao, 2023. "Automatic recognition of hot spray marking dot-matrix characters for steel-slab industry," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 869-884, February.
    2. Mohamed Ismail & Noha A. Mostafa & Ahmed El-assal, 2022. "Quality monitoring in multistage manufacturing systems by using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2471-2486, December.
    3. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    4. Jie Zhang & Pengpeng Yao & Hochung Wu & John H. Xin, 2023. "Automatic color pattern recognition of multispectral printed fabric images," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2747-2763, August.
    5. Carlos A. Escobar & Megan E. McGovern & Ruben Morales-Menendez, 2021. "Quality 4.0: a review of big data challenges in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2319-2334, December.
    6. Huixin Tian & Daixu Ren & Kun Li & Zhen Zhao, 2021. "An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 37-49, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Škrabánek & Alexandra Zahradníková jr., 2019. "Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    2. Xiaofu He & Zhiyong Yang & Joe Z Tsien, 2011. "A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-15, May.
    3. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.
    4. Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
    5. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    7. Hailay Hagos Entahabu & Amare Sewnet Minale & Emiru Birhane, 2023. "Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:1:d:10.1007_s10845-016-1254-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.