IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3602-d269290.html
   My bibliography  Save this article

Mechanical Anisotropy and Failure Characteristics of Columnar Jointed Rock Masses (CJRM) in Baihetan Hydropower Station: Structural Considerations Based on Digital Image Processing Technology

Author

Listed:
  • Yingjie Xia

    (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chuanqing Zhang

    (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hui Zhou

    (Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chunsheng Zhang

    (Power China Huadong Engineering Corporation Limited, Hangzhou 310014, China)

  • Wangbing Hong

    (Power China Huadong Engineering Corporation Limited, Hangzhou 310014, China)

Abstract

The columnar joints in Baihetan hydropower station are primary tensile joints since they were formed during the process of lava condensation. Understanding the influence of columnar jointed rock mass (CJRM) on the mechanical response and failure modes is the basis for designing of associated engineering works. Hence, the structural characteristics of Baihetan CJRM were analyzed by carrying out a geological survey at first. Three groups of numerical models capable of reflecting the structural characteristics of CJRM were then established to analyze the mechanical and failure characteristics. The results in this study showed that: (1) Irregularity of columnar basalt restricted crack propagation on columnar joints and also led to stress concentration in the distorted parts, and thus, damage of basalt columns; (2) when the included angle between direction of concentrated defect structures in CJRM and uniaxial stress was large, the defect structures can prevent crack propagation on columnar joints, and the failure of defect structure can cause the overall failure of the rock mass; and (3) under the condition of same columnar structure and included angle, the peak strength of models with microcracks and structural plane was low and the irregular shape of columnar joints decreased the anisotropy of mechanical parameters.

Suggested Citation

  • Yingjie Xia & Chuanqing Zhang & Hui Zhou & Chunsheng Zhang & Wangbing Hong, 2019. "Mechanical Anisotropy and Failure Characteristics of Columnar Jointed Rock Masses (CJRM) in Baihetan Hydropower Station: Structural Considerations Based on Digital Image Processing Technology," Energies, MDPI, vol. 12(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3602-:d:269290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lianchong Li & Yingjie Xia & Bo Huang & Liaoyuan Zhang & Ming Li & Aishan Li, 2016. "The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Reinoso & Percy Durand & Pattabhi Ramaiah Budarapu & Marco Paggi, 2019. "Crack Patterns in Heterogenous Rocks Using a Combined Phase Field-Cohesive Interface Modeling Approach: A Numerical Study," Energies, MDPI, vol. 12(6), pages 1-28, March.
    2. Tianjiao Li & Chun’an Tang & Jonny Rutqvist & Mengsu Hu & Lianchong Li & Liaoyuan Zhang & Bo Huang, 2020. "The Influence of an Interlayer on Dual Hydraulic Fractures Propagation," Energies, MDPI, vol. 13(3), pages 1-29, January.
    3. Yue Li & Jianye Mou & Shicheng Zhang & Xinfang Ma & Cong Xiao & Haoqing Fang, 2022. "Numerical Investigation of Interaction Mechanism between Hydraulic Fracture and Natural Karst Cave Based on Seepage-Stress-Damage Coupled Model," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Xin Chang & Yintong Guo & Jun Zhou & Xuehang Song & Chunhe Yang, 2018. "Numerical and Experimental Investigations of the Interactions between Hydraulic and Natural Fractures in Shale Formations," Energies, MDPI, vol. 11(10), pages 1-27, September.
    5. Kun Ai & Longchen Duan & Hui Gao & Guangliang Jia, 2018. "Hydraulic Fracturing Treatment Optimization for Low Permeability Reservoirs Based on Unified Fracture Design," Energies, MDPI, vol. 11(7), pages 1-23, July.
    6. Yiyu Lu & Yugang Cheng & Zhaolong Ge & Liang Cheng & Shaojie Zuo & Jianyu Zhong, 2016. "Determination of Fracture Initiation Locations during Cross-Measure Drilling for Hydraulic Fracturing of Coal Seams," Energies, MDPI, vol. 9(5), pages 1-13, May.
    7. Lianchong Li & Mingyang Zhai & Liaoyuan Zhang & Zilin Zhang & Bo Huang & Aishan Li & Jiaqiang Zuo & Quansheng Zhang, 2019. "Brittleness Evaluation of Glutenite Based On Energy Balance and Damage Evolution," Energies, MDPI, vol. 12(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3602-:d:269290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.