IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v53y2013icp299-305.html
   My bibliography  Save this article

Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses

Author

Listed:
  • Karimirad, Madjid

Abstract

This paper deals with the numerical modeling of a catenary moored spar-type wind turbine in the integrated coupled analyses. The current spar-type wind turbine is inspired by the Hywind concept. In this paper, different hydrodynamic models based on the Morison formula, Pressure integration method and Panel method considering the mean drift, first and second order forces are studied. A floating wind turbine in deep water depth supporting a 5-MW turbine system is considered. Simo-Riflex (DeepC), HAWC2 and FAST codes are used to carry out the coupled wave–wind-induced analyses. The results show that the damping and inertia forces of the mooring lines are important for the tension responses; especially, the damping of the mooring lines can help to damp-out the high-frequency elastic-deformations of the mooring system. However, the motion responses are not significantly affected by the mooring line damping-effects. The drift and second order forces do not significantly affect the motion and tension responses. However, the heave motion is more affected by the drift and second order forces. The results indicate that either the Morison formula considering the instantaneous position of the structure or first order hydrodynamic forces based on the Panel method and considering the quadratic viscous forces can provide accurate results for the slender spar-type wind turbines. Considering the second order forces is found to be 10–15 times more time consuming while the responses are not significantly affected for the present floating wind turbine. The coupled aero-hydro-servo-elastic code-to-code comparison of HAWC2 and FAST codes shows that the dynamic motion responses, structural responses at the tower–spar interface and at the blade root as well as the power production are in good agreement.

Suggested Citation

  • Karimirad, Madjid, 2013. "Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses," Renewable Energy, Elsevier, vol. 53(C), pages 299-305.
  • Handle: RePEc:eee:renene:v:53:y:2013:i:c:p:299-305
    DOI: 10.1016/j.renene.2012.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112007616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Kemin & Hong, Yu, 2018. "Simulation of Spar Type Floating Offshore Wind Turbine Subjected to Misaligned Wind-Wave Loading Using Conservation of Momentum Method," MPRA Paper 88777, University Library of Munich, Germany.
    2. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    3. Borg, Michael & Collu, Maurizio, 2015. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 296-310.
    4. Weimin Chen & Shuangxi Guo & Yilun Li & Yijun Shen, 2021. "Impacts of Mooring-Lines Hysteresis on Dynamic Response of Spar Floating Wind Turbine," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    6. Antonutti, Raffaello & Peyrard, Christophe & Johanning, Lars & Incecik, Atilla & Ingram, David, 2016. "The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain," Renewable Energy, Elsevier, vol. 88(C), pages 83-94.
    7. Yichen Jiang & Guanqing Hu & Zhi Zong & Li Zou & Guoqing Jin, 2020. "Influence of an Integral Heave Plate on the Dynamic Response of Floating Offshore Wind Turbine Under Operational and Storm Conditions," Energies, MDPI, vol. 13(22), pages 1-18, November.
    8. Mohsen Sobhaniasl & Francesco Petrini & Madjid Karimirad & Franco Bontempi, 2020. "Fatigue Life Assessment for Power Cables in Floating Offshore Wind Turbines," Energies, MDPI, vol. 13(12), pages 1-19, June.
    9. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    10. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    11. Meng, Qingshen & Hua, Xugang & Chen, Chao & Zhou, Shuai & Liu, Feipeng & Chen, Zhengqing, 2022. "Analytical study on the aerodynamic and hydrodynamic damping of the platform in an operating spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 198(C), pages 772-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:53:y:2013:i:c:p:299-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.