IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v64y2014icp244-254.html
   My bibliography  Save this article

Domestic integration of micro-renewable electricity generation in Ireland – The current status and economic reality

Author

Listed:
  • Li, Zhe
  • Reynolds, Anthony
  • Boyle, Fergal

Abstract

The utilisation of renewable energy resources for power generation is extremely important for Ireland due to the lack of indigenous fossil fuel resources. A micro-wind turbine is by far the most commonly used grid-connected micro-renewable electricity generation system for domestic applications in Ireland, followed by solar PV. Unfortunately, neither a single micro-wind turbine nor a single solar PV system can provide a continuous power supply due to variations in weather and climate conditions. The coupling of these two systems however can improve the power supply reliability by using the complementary characteristics of wind and solar energy. In this paper, a micro-renewable electricity-generation-system integration technique, tailored for applications in Ireland but generally applicable, is presented. Net present value is the parameter used to identify the optimal system. The optimal system can be a mono system, formed from a single micro-wind turbine or a single solar PV system, or a hybrid system formed from a combination of both. A renewable energy requirement is a constraint used in the integration to eliminate systems that cannot provide sufficient energy from renewable energy resources. The integration technique is applied to find the optimal system, under current Irish conditions, that can be formed from six sample micro-wind turbines and/or solar PV systems assembled from three sample solar PV modules. The analyses show that, with a 50% renewable energy requirement, the optimal system is a mono system containing a 2.4 kW micro-wind turbine; however, critically, the system is not economically viable. Four parameter studies assessing the effect of household electrical load, imported electricity price, exported electricity tariff and wind speed have also been conducted. From these studies it is seen that the most effective way to improve the financial performance of all systems is to offer a higher exported electricity tariff; installing a mono/hybrid system containing a micro-wind turbine in a location with a good wind resource can also have a significant effect.

Suggested Citation

  • Li, Zhe & Reynolds, Anthony & Boyle, Fergal, 2014. "Domestic integration of micro-renewable electricity generation in Ireland – The current status and economic reality," Renewable Energy, Elsevier, vol. 64(C), pages 244-254.
  • Handle: RePEc:eee:renene:v:64:y:2014:i:c:p:244-254
    DOI: 10.1016/j.renene.2013.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    2. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    3. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2012. "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, Elsevier, vol. 41(C), pages 64-74.
    4. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    5. Dihrab, Salwan S. & Sopian, K., 2010. "Electricity generation of hybrid PV/wind systems in Iraq," Renewable Energy, Elsevier, vol. 35(6), pages 1303-1307.
    6. Arribas, Luis & Cano, Luis & Cruz, Ignacio & Mata, Montserrat & Llobet, Ermen, 2010. "PV–wind hybrid system performance: A new approach and a case study," Renewable Energy, Elsevier, vol. 35(1), pages 128-137.
    7. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    8. Kelleher, J. & Ringwood, J.V., 2009. "A computational tool for evaluating the economics of solar and wind microgeneration of electricity," Energy, Elsevier, vol. 34(4), pages 401-409.
    9. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2009. "Renewable energy resources and technologies applicable to Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1975-1984, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    2. Edwin, M. & Joseph Sekhar, S., 2016. "Thermo-economic assessment of hybrid renewable energy based cooling system for food preservation in hilly terrain," Renewable Energy, Elsevier, vol. 87(P1), pages 493-500.
    3. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    4. Semmari, Hamza & Mauran, Sylvain & Stitou, Driss, 2017. "Experimental validation of an analytical model of hydraulic motor operating under variable electrical loads and pressure heads," Applied Energy, Elsevier, vol. 206(C), pages 1309-1320.
    5. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    2. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    3. Xinshuo Zhang & Guangwen Ma & Weibin Huang & Shijun Chen & Shuai Zhang, 2018. "Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    5. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    6. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    7. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    8. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    9. Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
    10. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    11. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    12. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    13. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    15. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    16. Hua, Jian & Shiu, Hong-Gwo, 2018. "Sustainable development of renewable energy on Wangan Island, Taiwan," Utilities Policy, Elsevier, vol. 55(C), pages 200-208.
    17. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    19. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    20. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:64:y:2014:i:c:p:244-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.