IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p491-d310616.html
   My bibliography  Save this article

Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion

Author

Listed:
  • Chibueze G. Achi

    (Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA
    Department of Civil Engineering, University of Ibadan, Ibadan 200284, Nigeria)

  • Amro Hassanein

    (Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA)

  • Stephanie Lansing

    (Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA)

Abstract

Currently, there are challenges with proper disposal of cassava processing wastewater, and a need for sustainable energy in the cassava industry. This study investigated the impact of co-digestion of cassava wastewater (CW) with livestock manure (poultry litter (PL) and dairy manure (DM)), and porous adsorbents (biochar (B-Char) and zeolite (ZEO)) on energy production and treatment efficiency. Batch anaerobic digestion experiments were conducted, with 16 treatments of CW combined with manure and/or porous adsorbents using triplicate reactors for 48 days. The results showed that CW combined with ZEO (3 g/g total solids (TS)) produced the highest cumulative CH 4 (653 mL CH 4 /g VS), while CW:PL (1:1) produced the most CH 4 on a mass basis (17.9 mL CH 4 /g substrate). The largest reduction in lag phase was observed in the mixture containing CW (1:1), PL (1:1), and B-Char (3 g/g TS), yielding 400 mL CH 4 /g volatile solids (VS) after 15 days of digestion, which was 84.8% of the total cumulative CH 4 from the 48-day trial. Co-digesting CW with ZEO, B-Char, or PL provided the necessary buffer needed for digestion of CW, which improved the process stability and resulted in a significant reduction in chemical oxygen demand (COD). Co-digestion could provide a sustainable strategy for treating and valorizing CW. Scale-up calculations showed that a CW input of 1000–2000 L/d co-digested with PL (1:1) could produce 9403 m 3 CH 4 /yr using a 50 m 3 digester, equivalent to 373,327 MJ/yr or 24.9 tons of firewood/year. This system would have a profit of $5642/yr and a $47,805 net present value.

Suggested Citation

  • Chibueze G. Achi & Amro Hassanein & Stephanie Lansing, 2020. "Enhanced Biogas Production of Cassava Wastewater Using Zeolite and Biochar Additives and Manure Co-Digestion," Energies, MDPI, vol. 13(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:491-:d:310616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    2. Paolo S. Calabrò & Filippo Fazzino & Adele Folino & Emilia Paone & Dimitrios Komilis, 2019. "Semi-Continuous Anaerobic Digestion of Orange Peel Waste: Effect of Activated Carbon Addition and Alkaline Pretreatment on the Process," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    3. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    4. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    2. Jessica Quintana-Najera & A. John Blacker & Louise A. Fletcher & Andrew B. Ross, 2023. "Understanding the Influence of Biochar Augmentation in Anaerobic Digestion by Principal Component Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Cristian Bernabé Arenas Sevillano & Marco Chiappero & Xiomar Gomez & Silvia Fiore & E. Judith Martínez, 2020. "Improving the Anaerobic Digestion of Wine-Industry Liquid Wastes: Treatment by Electro-Oxidation and Use of Biochar as an Additive," Energies, MDPI, vol. 13(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    4. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.
    6. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    8. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    9. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    11. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    12. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    13. Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).
    14. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Karol Durczak & Kamil Witaszek & Natalia Mioduszewska & Ireneusz Kowalik, 2020. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient," Energies, MDPI, vol. 13(5), pages 1-13, March.
    15. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
    16. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    17. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    18. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    19. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Tatiana Nevzorova, 2020. "Biogas Production in the Russian Federation: Current Status, Potential, and Barriers," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:491-:d:310616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.