IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6708-d464987.html
   My bibliography  Save this article

Influence of Substrate Type and Dose of Implanted Ions on the Electrical Parameters of Silicon in Terms of Improving the Efficiency of Photovoltaic Cells

Author

Listed:
  • Paweł Węgierek

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Justyna Pastuszak

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Kamil Dziadosz

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Marcin Turek

    (Institute of Physics, Maria Curie-Sklodowska University in Lublin, pl. M.Curie-Sklodowskiej 1, 20-031 Lublin, Poland)

Abstract

The main goal of this work was to conduct a comparative analysis of the electrical properties of the silicon implanted with neon ions, depending on the dose of ions and the type of substrate doping, for the possibility of generating additional energy levels by ion implantation in terms of improving the efficiency of photovoltaic cells made on its basis. The article presents the results of research on the capacitance and conductance of silicon samples doped with boron and phosphorus, the structure of which was modified in the implantation process with Ne + ions with energy E = 100 keV and different doses. The analysis of changes in electrical properties recorded at the annealing temperature of the samples T a = 298 K, 473 K, 598 K, 673 K, and 873 K, concerned the influence of the test temperature in the range from 203 K to 373 K, as well as the frequency f from 100 Hz to 10 MHz, and voltage U from 0.25 V to 2 V. It was possible to detect intermediate bands in the tested samples and determine their position in the band gap by estimating the activation energy value. By means of implantation, it is possible to modify the width of the silicon energy gap, the value of which directly affects the efficiency of the photovoltaic cell made on its basis. By introducing appropriate defects into the silicon crystal lattice, contributing to a change in the value of the energy gap E g , it is possible to increase the efficiency of the solar cell. On the basis of the obtained results, it can be seen that the highest activation energies are achieved for samples doped with phosphorus.

Suggested Citation

  • Paweł Węgierek & Justyna Pastuszak & Kamil Dziadosz & Marcin Turek, 2020. "Influence of Substrate Type and Dose of Implanted Ions on the Electrical Parameters of Silicon in Terms of Improving the Efficiency of Photovoltaic Cells," Energies, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6708-:d:464987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    2. Sunhwa Lee & Duy Phong Pham & Youngkuk Kim & Eun-Chel Cho & Jinjoo Park & Junsin Yi, 2020. "Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells," Energies, MDPI, vol. 13(11), pages 1-11, June.
    3. Urmila M. Diwekar, 2020. "Optimization Under Uncertainty," Springer Optimization and Its Applications, in: Introduction to Applied Optimization, edition 3, chapter 0, pages 151-215, Springer.
    4. Cheolmin Park & Gyeongbae Shim & Nagarajan Balaji & Jinjoo Park & Junsin Yi, 2020. "Correlation between Boron–Silicon Bonding Coordination, Oxygen Complexes and Electrical Properties for n-Type c-Si Solar Cell Applications," Energies, MDPI, vol. 13(12), pages 1-10, June.
    5. Ewa Klugmann-Radziemska, 2020. "Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction," Energies, MDPI, vol. 13(8), pages 1-12, April.
    6. Esther López & Antonio Martí & Elisa Antolín & Antonio Luque, 2020. "On the Potential of Silicon Intermediate Band Solar Cells," Energies, MDPI, vol. 13(12), pages 1-11, June.
    7. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominika Siwiec & Andrzej Pacana, 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 14(18), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Akinyele & Abraham Amole & Elijah Olabode & Ayobami Olusesi & Titus Ajewole, 2021. "Simulation and Analysis Approaches to Microgrid Systems Design: Emerging Trends and Sustainability Framework Application," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    2. Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
    3. Alaric Christian Montenon & Costas Papanicolas, 2020. "Economic Assessment of a PV Hybridized Linear Fresnel Collector Supplying Air Conditioning and Electricity for Buildings," Energies, MDPI, vol. 14(1), pages 1-25, December.
    4. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    5. Ewelina Krawczak, 2023. "A Comparative Analysis of Measured and Simulated Data of PV Rooftop Installations Located in Poland," Energies, MDPI, vol. 16(16), pages 1-17, August.
    6. Doan, Xuan Vinh, 2022. "Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning," European Journal of Operational Research, Elsevier, vol. 300(1), pages 73-84.
    7. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    8. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
    9. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Mehdi, Maryam & Ammari, Nabil & Alami Merrouni, Ahmed & El Gallassi, Hicham & Dahmani, Mohamed & Ghennioui, Abdellatif, 2023. "An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations," Renewable Energy, Elsevier, vol. 205(C), pages 695-716.
    11. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    12. Baibhaw Kumar & Gábor Szepesi & Zsolt Čonka & Michal Kolcun & Zsolt Péter & László Berényi & Zoltán Szamosi, 2021. "Trendline Assessment of Solar Energy Potential in Hungary and Current Scenario of Renewable Energy in the Visegrád Countries for Future Sustainability," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    13. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    14. Tomasz Janusz Teleszewski & Mirosław Żukowski & Dorota Anna Krawczyk & Antonio Rodero, 2021. "Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate," Energies, MDPI, vol. 14(11), pages 1-19, May.
    15. Zia R. Tahir & Ammara Kanwal & Muhammad Asim & M. Bilal & Muhammad Abdullah & Sabeena Saleem & M. A. Mujtaba & Ibham Veza & Mohamed Mousa & M. A. Kalam, 2022. "Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones," Sustainability, MDPI, vol. 14(23), pages 1-32, November.
    16. Muhammad Asim & Jassinnee Milano & Hassan Izhar Khan & Muhammad Hanzla Tahir & M. A. Mujtaba & Abd Halim Shamsuddin & Muhammad Abdullah & M. A. Kalam, 2022. "Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    17. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    18. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    19. Mariusz T. Sarniak, 2021. "The Efficiency of Obtaining Electricity and Heat from the Photovoltaic Module under Different Irradiance Conditions," Energies, MDPI, vol. 14(24), pages 1-13, December.
    20. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6708-:d:464987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.