IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3588-d383353.html
   My bibliography  Save this article

Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty

Author

Listed:
  • Tao Zhang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
    Department of Electrical and Computer Engineering, Technical University of Munich, 85748 Munich, Germany)

  • Minli Wang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Peihong Wang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Junyu Liang

    (Yunnan Electric Power Research Institute, CSG, Kunming 650228, China)

Abstract

To realize the best performances of the distributed energy system (DES), many uncertainties including demands, solar radiation, natural gas, and electricity prices must be addressed properly in the planning process. This study aims to study the optimal sizing and performances of a hybrid combined cooling, heating, and power (CCHP) system under uncertainty in consideration of the operation parameters, including the lowest electric load ratio (LELR) and the electric cooling ratio (ECR). In addition, the ability of the system to adapt to uncertainty is analyzed. The above works are implemented separately under three operation strategies with multi-objectives in energy and cost saving, as well as CO 2 reducing. Results show that the system with optimized operation parameters performs better in both the deterministic and uncertain conditions. When the ECRs in the summer and in mid-season as well as the LELR are set at 50.00%, 50.00%, and 20.00% respectively, the system operating in the strategy of following the electric load has the best ability to adapt to uncertainty. In addition, among all the uncertainties, the single uncertain natural gas price and the single uncertain heating demand have the smallest and largest effects on the optimal design respectively.

Suggested Citation

  • Tao Zhang & Minli Wang & Peihong Wang & Junyu Liang, 2020. "Optimal Design of a Combined Cooling, Heating, and Power System and Its Ability to Adapt to Uncertainty," Energies, MDPI, vol. 13(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3588-:d:383353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    2. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    4. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    5. Chengzhou Li & Ningling Wang & Hongyuan Zhang & Qingxin Liu & Youguo Chai & Xiaohu Shen & Zhiping Yang & Yongping Yang, 2019. "Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets," Energies, MDPI, vol. 12(21), pages 1-17, November.
    6. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    7. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    8. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    9. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    10. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    11. Roberts, Justo José & Marotta Cassula, Agnelo & Silveira, José Luz & da Costa Bortoni, Edson & Mendiburu, Andrés Z., 2018. "Robust multi-objective optimization of a renewable based hybrid power system," Applied Energy, Elsevier, vol. 223(C), pages 52-68.
    12. Huilian Liao, 2019. "Review on Distribution Network Optimization under Uncertainty," Energies, MDPI, vol. 12(17), pages 1-21, September.
    13. Majewski, Dinah Elena & Lampe, Matthias & Voll, Philip & Bardow, André, 2017. "TRusT: A Two-stage Robustness Trade-off approach for the design of decentralized energy supply systems," Energy, Elsevier, vol. 118(C), pages 590-599.
    14. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    15. Urmila M. Diwekar, 2020. "Optimization Under Uncertainty," Springer Optimization and Its Applications, in: Introduction to Applied Optimization, edition 3, chapter 0, pages 151-215, Springer.
    16. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    17. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    18. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    19. Kaplanis, S. & Kaplani, E., 2007. "A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values," Renewable Energy, Elsevier, vol. 32(8), pages 1414-1425.
    20. Niu, Jide & Tian, Zhe & Yue, Lu, 2020. "Robust optimal design of building cooling sources considering the uncertainty and cross-correlation of demand and source," Applied Energy, Elsevier, vol. 265(C).
    21. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    22. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    23. Lu, W.T. & Dai, C. & Fu, Z.H. & Liang, Z.Y. & Guo, H.C., 2018. "An interval-fuzzy possibilistic programming model to optimize China energy management system with CO2 emission constraint," Energy, Elsevier, vol. 142(C), pages 1023-1039.
    24. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    2. Yunshou Mao & Jiekang Wu & Wenjie Zhang, 2020. "An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage," Energies, MDPI, vol. 13(23), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    2. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    3. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    4. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    5. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    6. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    7. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    8. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    9. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    11. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    12. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    13. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    14. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    15. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    16. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    17. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    18. Jie, Pengfei & Zhao, Wanyue & Yan, Fuchun & Man, Xiaoxin & Liu, Chunhua, 2022. "Economic, energetic and environmental optimization of hybrid biomass gasification-based combined cooling, heating and power system based on an improved operating strategy," Energy, Elsevier, vol. 240(C).
    19. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    20. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3588-:d:383353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.