IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6617-d462368.html
   My bibliography  Save this article

Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review

Author

Listed:
  • Lucie Zemanová

    (Victor Kaplan Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic)

  • Pavel Rudolf

    (Victor Kaplan Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic)

Abstract

The paper critically reviews the current state of the art in flow inside sidewall gaps of hydraulic pumps and turbines. It describes the consequences of the presence of this type of flow in turbomachinery and then relates it to other physical phenomena that determine the behavior, operating characteristics, and overall performance of the machine. Despite the small dimensions of the rotor-stator spaces, the flow in these regions can significantly affect the overall flow field and, consequently, efficiency. The circulation of the fluid inside the gaps and secondary flow that is caused by rotating elements influences the disk friction losses, which is of great importance, especially in the case of low specific speed pumps and turbines. The flow pattern affects the pressure distribution inside a machine and, thus, generates axial thrust. The presence of secondary flow also significantly changes the rotordynamics and can bring about undesirable vibrations and acoustics issues. This article aims to review and summarize the studies that were conducted on the mentioned phenomena. Experimental and numerical studies are both taken into consideration. It proposes some requirements for prospective research in order to fill current gaps in the literature and reveals the upcoming challenges in the design of hydraulic machines.

Suggested Citation

  • Lucie Zemanová & Pavel Rudolf, 2020. "Flow Inside the Sidewall Gaps of Hydraulic Machines: A Review," Energies, MDPI, vol. 13(24), pages 1-37, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6617-:d:462368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chirag Trivedi & Michel J. Cervantes & Ole G. Dahlhaug, 2016. "Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case," Energies, MDPI, vol. 9(2), pages 1-24, January.
    2. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    3. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    4. Su, Xianghui & Huang, Si & Zhang, Xuejiao & Yang, Sunsheng, 2016. "Numerical research on unsteady flow rate characteristics of pump as turbine," Renewable Energy, Elsevier, vol. 94(C), pages 488-495.
    5. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lilian Chabannes & David Štefan & Pavel Rudolf, 2021. "Effect of Splitter Blades on Performances of a Very Low Specific Speed Pump," Energies, MDPI, vol. 14(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    2. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    3. Chirag Trivedi & Igor Iliev & Ole Gunnar Dahlhaug, 2020. "Numerical Study of a Francis Turbine over Wide Operating Range: Some Practical Aspects of Verification," Sustainability, MDPI, vol. 12(10), pages 1-10, May.
    4. Xing Zhou & Changzheng Shi & Kazuyoshi Miyagawa & Hegao Wu & Jinhong Yu & Zhu Ma, 2020. "Investigation of Pressure Fluctuation and Pulsating Hydraulic Axial Thrust in Francis Turbines," Energies, MDPI, vol. 13(7), pages 1-16, April.
    5. Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
    6. Dmitriy Demyanov, 2015. "Analysis and prospects of development of the tourism industry in Russia," Published Papers ch1638, Russian Presidential Academy of National Economy and Public Administration.
    7. Pang, Jiayang & Liu, Huizi & Liu, Xiaobing & Yang, Han & Peng, Yuanjie & Zeng, Yongzhong & Yu, Zhishun, 2022. "Study on sediment erosion of high head Francis turbine runner in Minjiang River basin," Renewable Energy, Elsevier, vol. 192(C), pages 849-858.
    8. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    9. Trivedi, Chirag & Cervantes, Michel J., 2017. "Fluid-structure interactions in Francis turbines: A perspective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 87-101.
    10. Chen, Xiaoping & Zhang, Zhiguo & Huang, Jianmin & Zhou, Xiaojie & Zhu, Zuchao, 2024. "Numerical investigation on energy change field in a centrifugal pump as turbine under different flow rates," Renewable Energy, Elsevier, vol. 230(C).
    11. Koirala, Ravi & Neopane, Hari Prasad & Zhu, Baoshan & Thapa, Bhola, 2019. "Effect of sediment erosion on flow around guide vanes of Francis turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1022-1027.
    12. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    13. Laouari, Ahmed & Ghenaiet, Adel, 2021. "Investigation of steady and unsteady cavitating flows through a small Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 841-861.
    14. Krzemianowski, Zbigniew & Steller, Janusz, 2021. "High specific speed Francis turbine for small hydro purposes - Design methodology based on solving the inverse problem in fluid mechanics and the cavitation test experience," Renewable Energy, Elsevier, vol. 169(C), pages 1210-1228.
    15. Lai, Xide & Chen, Xiaoming & Liang, Quanwei & Ye, Daoxing & Gou, Qiuqin & Wang, Rongtao & Yan, Yi, 2023. "Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine," Renewable Energy, Elsevier, vol. 211(C), pages 236-247.
    16. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    17. Yao, Liming & Liu, Yuxi & Xiao, Zhongmin & Chen, Yang, 2023. "An algorithm combining sedimentation experiments for pipe erosion investigation," Energy, Elsevier, vol. 270(C).
    18. Jianxin Hu & Wenfeng Su & Ke Li & Kexin Wu & Ling Xue & Guolei He, 2023. "Transient Hydrodynamic Behavior of a Pump as Turbine with Varying Rotating Speed," Energies, MDPI, vol. 16(4), pages 1-17, February.
    19. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    20. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6617-:d:462368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.