IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6580-d461766.html
   My bibliography  Save this article

Power Split Supercharging: A Mild Hybrid Approach to Boost Fuel Economy

Author

Listed:
  • Shima Nazari

    (Department of Mechanical Engineering, Universiy of California Davis, Davis, CA 95616, USA)

  • Jason Siegel

    (Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

  • Robert Middleton

    (Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

  • Anna Stefanopoulou

    (Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

Abstract

This work investigates an innovative low-voltage (<60 V) hybrid device that enables engine boosting and downsizing in addition to mild hybrid functionalities such as regenerative braking, start-stop, and torque assist. A planetary gear set and a brake permit the power split supercharger (PSS) to share a 9 kW motor between supercharging the engine and direct torque supply to the crankshaft. In contrast, most e-boosting schemes use two separate motors for these two functionalities. This single motor structure restricts the PSS operation to only one of the supercharging or parallel hybrid modes; therefore, an optimized decision making strategy is necessary to select both the device mode and its power split ratio. An adaptive equivalent consumption minimization strategy (A-ECMS), which uses the battery state of charge (SoC) history to adjust the equivalence factor, is developed for energy management of the PSS. The A-ECMS effectiveness is compared against a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS reduces vehicle fuel consumption by 18.4% over standard FTP75 cycle, compared to a baseline turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8% compared to the baseline.

Suggested Citation

  • Shima Nazari & Jason Siegel & Robert Middleton & Anna Stefanopoulou, 2020. "Power Split Supercharging: A Mild Hybrid Approach to Boost Fuel Economy," Energies, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6580-:d:461766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Chao & Sun, Fengchun & He, Hongwen, 2017. "Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1644-1653.
    2. Enang, Wisdom & Bannister, Chris, 2017. "Modelling and control of hybrid electric vehicles (A comprehensive review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1210-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    2. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
    3. Józef Drewniak & Tomasz Kądziołka & Jacek Rysiński & Konrad Stańco, 2023. "Power Flow in Coupled Three-Row Series-Parallel Planetary Gear System, Part I: Without Power Losses," Energies, MDPI, vol. 16(21), pages 1-37, October.
    4. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    5. Piotr Bera & Agata Drzewosz, 2024. "A Novel Formula for Calculating the Dynamic Torque of an Engine Based on Its Geometric Parameters and Static Measurements," Energies, MDPI, vol. 17(20), pages 1-15, October.
    6. Danijel Pavković & Mihael Cipek & Filip Plavac & Juraj Karlušić & Matija Krznar, 2022. "Internal Combustion Engine Starting and Torque Boosting Control System Design with Vibration Active Damping Features for a P0 Mild Hybrid Vehicle Configuration," Energies, MDPI, vol. 15(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    2. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    3. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
    4. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    7. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    8. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    10. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    11. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Xixue Liu & Datong Qin & Shaoqian Wang, 2019. "Minimum Energy Management Strategy of Equivalent Fuel Consumption of Hybrid Electric Vehicle Based on Improved Global Optimization Equivalent Factor," Energies, MDPI, vol. 12(11), pages 1-17, May.
    13. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    14. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    15. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    16. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    17. Pengxiang Song & Wenchuan Song & Ao Meng & Hongxue Li, 2024. "Adaptive Equivalent Factor-Based Energy Management Strategy for Plug-In Hybrid Electric Buses Considering Passenger Load Variations," Energies, MDPI, vol. 17(6), pages 1-30, March.
    18. Wang, An & Xu, Junshi & Zhang, Mingqian & Zhai, Zhiqiang & Song, Guohua & Hatzopoulou, Marianne, 2022. "Emissions and fuel consumption of a hybrid electric vehicle in real-world metropolitan traffic conditions," Applied Energy, Elsevier, vol. 306(PB).
    19. Xin, Liguo & Ahmad, Manzoor & Khattak, Shoukat Iqbal, 2023. "Impact of innovation in hybrid electric vehicles-related technologies on carbon dioxide emissions in the 15 most innovative countries," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    20. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6580-:d:461766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.