IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6465-d458113.html
   My bibliography  Save this article

Potential for Shock-Wave Generation at Diesel Engine Conditions and Its Influence on Spray Characteristics

Author

Listed:
  • Weidi Huang

    (Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba East, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan)

  • Huifeng Gong

    (Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba East, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan)

  • Raditya Hendra Pratama

    (Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba East, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan)

  • Seoksu Moon

    (Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea)

  • Keiji Takagi

    (Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba East, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
    School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan)

  • Zhili Chen

    (School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan)

Abstract

Increasing the fuel injection pressure is currently the most effective way to achieve a better fuel–air mixing quality in modern engines. Systems capable of delivering fuels at a pressure of over 250 MPa have been widely adopted in diesel engines. At such high injection pressures, the shock-wave generation during fuel injection has been noticed. Investigations can be found widely discussing on how the shock-wave generation during fuel injection would affect the spray dynamics. However, the argument remains whether the shock wave can occur at diesel engine conditions since the diesel engine is operated at very high ambient temperature and density. Even if it could occur, how significantly the spray-induced shock wave affects the spray characteristics is rarely known. To address these concerns, this study was proposed. First, experiments were conducted to obtain the detailed spray dynamics from the nozzle exit to spray downstream field by taking advantage of the X-ray phase-contrast imaging (XPCI) and schlieren imaging techniques. It is found that supersonic and subsonic ligaments coexist in one spray. Increasing the injection pressure or reducing the ambient density would extend the supersonic part in the spray. Multiple shock waves occur subsequently from the nozzle exit, where the spray has the highest local velocity. Shock-wave generation during fuel injection could enhance spray penetration, whereas this effect depends on the length of the supersonic part in the spray. Finally, a diagram was proposed to predict the potential for the shock-wave generation and discuss the possible effect on spray characteristics at diesel engine conditions.

Suggested Citation

  • Weidi Huang & Huifeng Gong & Raditya Hendra Pratama & Seoksu Moon & Keiji Takagi & Zhili Chen, 2020. "Potential for Shock-Wave Generation at Diesel Engine Conditions and Its Influence on Spray Characteristics," Energies, MDPI, vol. 13(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6465-:d:458113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moon, Seoksu, 2016. "Novel insights into the dynamic structure of biodiesel and conventional fuel sprays from high-pressure diesel injectors," Energy, Elsevier, vol. 115(P1), pages 615-625.
    2. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waldemar Fedak & Roman Ulbrich & Grzegorz Ligus & Marek Wasilewski & Szymon Kołodziej & Barbara Wasilewska & Marek Ochowiak & Sylwia Włodarczak & Andżelika Krupińska & Ivan Pavlenko, 2021. "Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus," Energies, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Tao & Wang, Kaixin & Lei, Yan & Wu, Chenglin & Liu, Yuwei & Chen, Xinyu & Guo, Peng, 2018. "Investigation on effects of back pressure on submerged jet flow from short cylindrical orifice filled with diesel fuel," Energy, Elsevier, vol. 162(C), pages 964-976.
    2. Pham, Quangkhai & Chang, Mengzhao & Kalwar, Ankur & Agarwal, Avinash Kumar & Park, Sungwook & Choi, Byungchul & Park, Suhan, 2023. "Macroscopic spray characteristics and internal structure studies of natural gas injection," Energy, Elsevier, vol. 263(PE).
    3. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6465-:d:458113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.