IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029413.html
   My bibliography  Save this article

Macroscopic spray characteristics and internal structure studies of natural gas injection

Author

Listed:
  • Pham, Quangkhai
  • Chang, Mengzhao
  • Kalwar, Ankur
  • Agarwal, Avinash Kumar
  • Park, Sungwook
  • Choi, Byungchul
  • Park, Suhan

Abstract

The macroscopic spray characteristics and internal structure of a highly expanded compressed natural gas (Methane; CH4) spray were experimentally and numerically investigated. The spray jet characteristics were analyzed under various pressure ratios (PR), defined as the ratio of the methane injection pressure to the ambient pressure. The spray characteristics and shockwave structures were investigated using Schlieren imaging. The novelty originates from comparing the methane spray development and shockwave parameters under low PR (4 < PR < 9) conditions. The investigation included an evaluation of the effect of choking phenomena on gas flow at different PRs by changing the methane injection pressure. The results showed that a high injection pressure did not improve the spray tip penetration but increased the choking phenomenon in methane flow in the near-field region. This phenomenon is a key factor that strongly influences the shockwave structure and leads to 3.5% longer injection duration and at least 13% increase in the spray volume and area before entering the fully developed region of the Mach disk. With respect to the Mach disk parameters, a PR change from 6 to 9 enhanced the Mack disk height by at least 13.5% and its width by at least 29%. Increasing the Mach disk width with PR increased the methane near-field angle of the spray by at least 29%, triple-point angle by at least 29%, and spray width at the triple point by at least 29% because of the larger radial gas spray development. Overall, the comparison of the macroscopic spray characteristics and Mach disk parameters showed that the macroscopic spray parameters were almost similar despite the changes in the PRs. In contrast, the Mach disk parameters (height, width, and triple point angle) and variations in the methane spray field were larger than those in the macroscopic spray parameters. In addition, the simulation results were used to analyze the energy conservation and transfer conversion efficiencies of the gaseous injection system. The same increase in PR led to greater energy transfer and conversion efficiencies by 0.05% and 6.7%, respectively, which adversely affects charge mixing in the intake manifold. Strong air turbulence is required to enhance the charge-mixing mechanism and achieve a homogeneous fuel-air mixture. Therefore, the choking phenomenon requires more attention when implementing gaseous injection systems for internal combustion engines.

Suggested Citation

  • Pham, Quangkhai & Chang, Mengzhao & Kalwar, Ankur & Agarwal, Avinash Kumar & Park, Sungwook & Choi, Byungchul & Park, Suhan, 2023. "Macroscopic spray characteristics and internal structure studies of natural gas injection," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029413
    DOI: 10.1016/j.energy.2022.126055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jie & Wang, Junle & Zhao, Hongbo, 2018. "Optimization of the injection parameters and combustion chamber geometries of a diesel/natural gas RCCI engine," Energy, Elsevier, vol. 164(C), pages 837-852.
    2. Badawy, Tawfik & Bao, XiuChao & Xu, Hongming, 2017. "Impact of spark plug gap on flame kernel propagation and engine performance," Applied Energy, Elsevier, vol. 191(C), pages 311-327.
    3. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    2. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    3. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    4. Bo Zhang & Huaiyu Wang & Shuofeng Wang, 2023. "Computational Investigation of Combustion, Performance, and Emissions of a Diesel-Hydrogen Dual-Fuel Engine," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    5. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    6. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    7. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    8. Shizheng Liu & Ningbo Zhao & Jianguo Zhang & Jialong Yang & Zhiming Li & Hongtao Zheng, 2019. "Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors," Energies, MDPI, vol. 12(8), pages 1-16, April.
    9. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Wright, Y.M. & Vuorinen, V., 2018. "Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration," Applied Energy, Elsevier, vol. 230(C), pages 486-505.
    10. Kuo Jiang & Hong Zeng & Zefan Wu & Jianping Sun & Cai Chen & Bing Han, 2023. "Study on the Effect of Parameter Sensitivity on Engine Optimization Results," Energies, MDPI, vol. 16(23), pages 1-16, December.
    11. Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
    12. Weidi Huang & Huifeng Gong & Raditya Hendra Pratama & Seoksu Moon & Keiji Takagi & Zhili Chen, 2020. "Potential for Shock-Wave Generation at Diesel Engine Conditions and Its Influence on Spray Characteristics," Energies, MDPI, vol. 13(23), pages 1-19, December.
    13. Han, Guopeng & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Wei, Hongyuan, 2017. "Mechanism analysis on controllable methanol quick combustion," Applied Energy, Elsevier, vol. 206(C), pages 558-567.
    14. Motlagh, Tara Yazdani & Azadani, Leila N. & Yazdani, Kaveh, 2020. "Multi-objective optimization of diesel injection parameters in a natural gas/diesel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 279(C).
    15. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2020. "Split diesel injection effect on knocking of natural gas/diesel dual-fuel engine at high load conditions," Applied Energy, Elsevier, vol. 279(C).
    16. Huang, Shuai & Li, Tie & Zhang, Zhifei & Wang, Linyan & Yu, Xiao & Zheng, Ming & Yang, Rundai & Zhao, Xinwu, 2021. "Influencing factors on the vibrational and rotational temperatures in the spark discharge channel," Energy, Elsevier, vol. 222(C).
    17. Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
    18. Discepoli, G. & Cruccolini, V. & Ricci, F. & Di Giuseppe, A. & Papi, S. & Grimaldi, C.N., 2020. "Experimental characterisation of the thermal energy released by a Radio-Frequency Corona Igniter in nitrogen and air," Applied Energy, Elsevier, vol. 263(C).
    19. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    20. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.