IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1201-1209.html
   My bibliography  Save this article

Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace

Author

Listed:
  • Chowdhury, Mohammad Shyfur Rahman
  • Azad, A.K.
  • Karim, Md. Rezwanul
  • Naser, Jamal
  • Bhuiyan, Arafat A.

Abstract

This study presents the numerical investigation of co-firing behaviour of pulverized straw particles with coal in air and O2/CO2 mixtures. Validation is conducted in a semi-technical once-through 30 kW swirl-stabilized furnace. Reference air-fuel (21% O2) and oxy-fuel (30% O2) cases were considered for four different coal/straw ratios (100% coal, 20% straw, 50% straw and 100% straw). AVL Fire is used as a CFD modelling tool. A comprehensive grid independency test was conducted considering three different grid sizes. Ignition performance, emission characteristics, heating profile, residence time were evaluated for different fuel ratios under air and oxy-fuel conditions. This work has shown that no significant changes occur to the fundamental combustion characteristics for straw compared to coal when burned in the O2/CO2 atmosphere to air firing case. It was found that with 20% straw sharing, sensible performances were observed similar to that of 100% coal combustion. Also a critical analytical analysis was conducted to investigate the heating performance for straw particle of different sizes (100 μm, 330 μm and 1000 μm). The heating profiles show significant differences between the three particle sizes assuming isothermal temperature gradient and heating by both radiation and convection. It is seen that the variation of the level of SO2 is not significant between air and oxy-firing cases. However, slightly less amount of SO2 is predicted in oxy-firing case. The reduction in NO is due to the effects of higher NO levels in the flue gas promoting gas-phase reduction, significantly higher levels of CO in the flame zone and the usage of a high-NOx burner in combination. The heating profiles for different size of straw particle suggest that there is a definite influence on the overall performance of the furnace. Larger particle do not ignite properly due to lower residence time leading to lower burnout. The possibility of burnout of the larger straw particle size is less due to less residence time in air-firing compared to oxy-firing case.

Suggested Citation

  • Chowdhury, Mohammad Shyfur Rahman & Azad, A.K. & Karim, Md. Rezwanul & Naser, Jamal & Bhuiyan, Arafat A., 2019. "Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace," Renewable Energy, Elsevier, vol. 143(C), pages 1201-1209.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1201-1209
    DOI: 10.1016/j.renene.2019.05.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarlat, Nicolae & Dallemand, Jean-Francois & Skjelhaugen, Odd Jarle & Asplund, Dan & Nesheim, Lars, 2011. "An overview of the biomass resource potential of Norway for bioenergy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3388-3398, September.
    2. Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
    3. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    4. Karampinis, E. & Nikolopoulos, N. & Nikolopoulos, A. & Grammelis, P. & Kakaras, E., 2012. "Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace," Applied Energy, Elsevier, vol. 97(C), pages 514-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, Jonghun & Kim, Junghwan, 2022. "Optimizing ash deposit removal system to maximize biomass recycling as renewable energy for CO2 reduction," Renewable Energy, Elsevier, vol. 190(C), pages 1006-1017.
    2. Hu, Zhongfa & Wang, Xuebin & Zhang, Lan & Yang, Shunzhi & Ruan, Renhui & Bai, Shengjie & Zhu, Yiming & Wang, Liang & Mikulčić, Hrvoje & Tan, Houzhang, 2020. "Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China," Renewable Energy, Elsevier, vol. 155(C), pages 225-236.
    3. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    4. Mohammad Hosseini Rahdar & Fuzhan Nasiri, 2020. "Operation Adaptation of Moving Bed Biomass Combustors under Various Waste Fuel Conditions," Energies, MDPI, vol. 13(23), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabet, F. & Gökalp, I., 2015. "Review on CFD based models for co-firing coal and biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1101-1114.
    2. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    3. Milićević, Aleksandar & Belošević, Srdjan & Crnomarković, Nenad & Tomanović, Ivan & Tucaković, Dragan, 2020. "Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace," Applied Energy, Elsevier, vol. 260(C).
    4. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    5. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    6. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    7. Turetta, Ana Paula Dias & Kuyper, Thomas & Malheiros, Tadeu Fabrício & Coutinho, Heitor Luiz da Costa, 2017. "A framework proposal for sustainability assessment of sugarcane in Brazil," Land Use Policy, Elsevier, vol. 68(C), pages 597-603.
    8. Hillig, Débora Moraes & Pohlmann, Juliana Gonçalves & Manera, Christian & Perondi, Daniele & Pereira, Fernando Marcelo & Altafini, Carlos Roberto & Godinho, Marcelo, 2020. "Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions," Energy, Elsevier, vol. 202(C).
    9. Modliński, Norbert & Madejski, Pawel & Janda, Tomasz & Szczepanek, Krzysztof & Kordylewski, Wlodzimierz, 2015. "A validation of computational fluid dynamics temperature distribution prediction in a pulverized coal boiler with acoustic temperature measurement," Energy, Elsevier, vol. 92(P1), pages 77-86.
    10. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    11. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    12. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    13. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    14. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    16. Dong, Leilei & Alexiadis, Alessio, 2023. "Simulation of char burnout characteristics of biomass/coal blend with a simplified single particle reaction model," Energy, Elsevier, vol. 264(C).
    17. Tabakaev, Roman & Kahn, Victor & Dubinin, Yury & Rudmin, Maxim & Yazykov, Nikolay & Skugarov, Artem & Alekseenko, Eduard & Zavorin, Alexander & Preis, Sergei, 2022. "High-strength fuel pellets made of flour milling and coal slack wastes," Energy, Elsevier, vol. 243(C).
    18. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    19. Halaj, Daniel & Brodrechtova, Yvonne, 2018. "Marketing decision making in the forest biomass market: The case of Austria, Finland and Slovakia," Forest Policy and Economics, Elsevier, vol. 97(C), pages 201-209.
    20. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1201-1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.