IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6014-d446828.html
   My bibliography  Save this article

A Framework for Big Data Analytical Process and Mapping—BAProM: Description of an Application in an Industrial Environment

Author

Listed:
  • Giovanni Gravito de Carvalho Chrysostomo

    (Postgraduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Rua da Consolação, 896, Prédio 30—Consolação, São Paulo 01302-907, Brazil)

  • Marco Vinicius Bhering de Aguiar Vallim

    (Postgraduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Rua da Consolação, 896, Prédio 30—Consolação, São Paulo 01302-907, Brazil)

  • Leilton Santos da Silva

    (EMAE—Metropolitan Company of Water & Energy, Avenida Nossa Senhora do Sabará, 5312—Vila Emir, São Paulo 04447-902, Brazil)

  • Leandro A. Silva

    (Postgraduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, Rua da Consolação, 896, Prédio 30—Consolação, São Paulo 01302-907, Brazil)

  • Arnaldo Rabello de Aguiar Vallim Filho

    (Computer Science Department, Mackenzie Presbyterian University, Rua da Consolação, 896, Prédio 31—Consolação, São Paulo 01302-907, Brazil)

Abstract

This paper presents an application of a framework for Big Data Analytical Process and Mapping—BAProM—consisting of four modules: Process Mapping, Data Management, Data Analysis, and Predictive Modeling. The framework was conceived as a decision support tool for industrial business, encompassing the whole big data analytical process. The first module incorporates in big data analytical a mapping of processes and variables, which is not common in such processes. This is a proposal that proved to be adequate in the practical application that was developed. Next, an analytical “workbench” was implemented for data management and exploratory analysis (Modules 2 and 3) and, finally, in Module 4, the implementation of artificial intelligence algorithm support predictive processes. The modules are adaptable to different types of industry and problems and can be applied independently. The paper presents a real-world application seeking as final objective the implementation of a predictive maintenance decision support tool in a hydroelectric power plant. The process mapping in the plant identified four subsystems and 100 variables. With the support of the analytical workbench, all variables have been properly analyzed. All underwent a cleaning process and many had to be transformed, before being subjected to exploratory analysis. A predictive model, based on a decision tree (DT), was implemented for predictive maintenance of equipment, identifying critical variables that define the imminence of an equipment failure. This DT model was combined with a time series forecasting model, based on artificial neural networks, to project those critical variables for a future time. The real-world application showed the practical feasibility of the framework, particularly the effectiveness of the analytical workbench, for pre-processing and exploratory analysis, as well as the combined predictive model, proving effectiveness by providing information on future events leading to equipment failures.

Suggested Citation

  • Giovanni Gravito de Carvalho Chrysostomo & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro A. Silva & Arnaldo Rabello de Aguiar Vallim Filho, 2020. "A Framework for Big Data Analytical Process and Mapping—BAProM: Description of an Application in an Industrial Environment," Energies, MDPI, vol. 13(22), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6014-:d:446828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    3. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    4. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    5. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    2. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    3. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    4. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    5. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    6. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    8. Gokturk Poyrazoglu & HyungSeon Oh, 2019. "Co-optimization of Transmission Maintenance Scheduling and Production Cost Minimization," Energies, MDPI, vol. 12(15), pages 1-18, July.
    9. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    11. Hongsheng Su & Yifan Zhao & Xueqian Wang, 2023. "Analysis of a State Degradation Model and Preventive Maintenance Strategies for Wind Turbine Generators Based on Stochastic Differential Equations," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    12. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    13. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    14. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    15. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    16. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    17. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    19. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    20. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6014-:d:446828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.